Loading…

Thermal transport properties in monolayer group-IV binary compounds

New classes of two-dimensional (2D) materials beyond graphene are now attracting intense interest owing to their unique properties and functions. By combining first-principle calculation and the Boltzmann transport equation, we investigated the thermal transport properties of monolayer honeycomb str...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2020-07, Vol.32 (30), p.305301-305301
Main Authors: Zhang, Qian-Qian, Jia, Pin-Zhen, Chen, Xue-Kun, Zhou, Wu-Xing, Chen, Ke-Qiu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:New classes of two-dimensional (2D) materials beyond graphene are now attracting intense interest owing to their unique properties and functions. By combining first-principle calculation and the Boltzmann transport equation, we investigated the thermal transport properties of monolayer honeycomb structures of group-IV (C, Si, Ge, Sn) binary compounds. It is found that the thermal conductivity (κ) of these compounds span an enormously large range from 0.04 to 144.29 W m−1 K−1, demonstrating promising applications to nanoscale thermoelectrics and thermal management. The κ of low-buckled structures such as SiGe, SiSn and GeSn is lower than that of planar structures such as SiC, GeC and SnC, which can be ascribed to heavy atomic mass and broken in-plane reflection symmetry. Moreover, the κ of planar or low-buckled compounds with Sn atom is much lower than others, and the detailed origin for this phenomenon and contribution of different phonon modes to the κ are investigated. This work has fully studied the diversity of the thermal phenomenon and provides more options for application on thermal transport.
ISSN:0953-8984
1361-648X
DOI:10.1088/1361-648X/ab81c3