Loading…
The profile of chiral skyrmions of small radius
Chiral skyrmions are stable particle-like solutions of the Landau-Lifshitz equation for ferromagnets with the Dzyaloshinskii-Moriya (DM) interaction, characterized by a topological number. We study the profile of an axially symmetric skyrmion and give exact formulae for the solution of the correspon...
Saved in:
Published in: | Nonlinearity 2020-07, Vol.33 (7), p.3395-3408 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chiral skyrmions are stable particle-like solutions of the Landau-Lifshitz equation for ferromagnets with the Dzyaloshinskii-Moriya (DM) interaction, characterized by a topological number. We study the profile of an axially symmetric skyrmion and give exact formulae for the solution of the corresponding far-field and near-field equations, in the asymptotic limit of small DM parameter (alternatively large anisotropy). The matching of these two fields leads to a formula for the skyrmion radius as a function of the DM parameter. The derived solutions show the different length scales which are present in the skyrmion profiles. The picture is thus created of a chiral skyrmion that is born out of a Belavin-Polyakov solution with an infinitesimally small radius, as the DM parameter is increased from zero. The skyrmion retains the Belavin-Polyakov profile over and well-beyond the core before it assumes an exponential decay; the profile of an axially-symmetric Belavin-Polyakov solution of unit degree plays the role of the universal core profile of chiral skyrmions. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/1361-6544/ab81eb |