Loading…

Channel capacity and quantum entanglement of autofocusing hypergeometric-Gaussian beams through non-Kolmogorov turbulence

We establish propagation models for distributing autofocusing hypergeometric-Gaussian (HyGG) beams via non-Kolmogorov atmospheric turbulence in the single-photon and biphoton cases. Analytical expressions of the channel capacity and entanglement are employed to explore the communication performance...

Full description

Saved in:
Bibliographic Details
Published in:Physica scripta 2023-03, Vol.98 (3), p.35101
Main Authors: Bao, Xiangjiang, Zhu, Yun, Wang, Jicheng, Hu, Zheng-Da
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We establish propagation models for distributing autofocusing hypergeometric-Gaussian (HyGG) beams via non-Kolmogorov atmospheric turbulence in the single-photon and biphoton cases. Analytical expressions of the channel capacity and entanglement are employed to explore the communication performance in turbulence. It can be demonstrated that in the single-photon case, a lower hollowness parameter and larger topological charge could contribute to the anti-interference ability of HyGG beams. Such an anti-interference ability could be affected by the autofocusing distance more severely for beams with larger topological charges. In addition, the channel capacity of beams at a certain distance decays rapidly at first before it grows steadily with the increase in the power-law exponent of the non-Kolmogorov spectrum. For the biphoton case, the higher hollowness parameter, larger power-law exponent of the non-Kolmogorov spectrum and larger topological charge make HyGG beams maintain a high concurrence at longer distances. We believe that our results could serve as a reference for improving the quality of orbital-angular-momentum communication of HyGG beams via atmospheric turbulence.
ISSN:0031-8949
1402-4896
DOI:10.1088/1402-4896/acb328