Loading…
Percolation and jamming properties in an object growth model on a triangular lattice with finite-size impurities
A percolation model with nucleation and object growth is studied by Monte Carlo simulations on a triangular lattice with finite-size impurities. The growing objects are needle-like objects and self-avoiding random walk chains. Results are obtained for three different shapes of impurities covering th...
Saved in:
Published in: | Journal of statistical mechanics 2024-09, Vol.2024 (9), p.93213 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A percolation model with nucleation and object growth is studied by Monte Carlo simulations on a triangular lattice with finite-size impurities. The growing objects are needle-like objects and self-avoiding random walk chains. Results are obtained for three different shapes of impurities covering three lattice sites—needle-like, angled and triangular. In each run through the system, the lattice is initially randomly occupied by impurities of a specified shape at a given concentration ρ imp . Then, the seeds for the object growth are randomly distributed at a given concentration ρ . The percolation and jamming properties of the growing objects are compared for the three different impurity shapes. For all the impurity shapes, the percolation thresholds θ p ∗ have lower values in the growing needle-like objects than in the growing self-avoiding random walk chains. In the presence of needle-like and angled impurities, the percolation threshold increases with the impurity concentration for a fixed seed density. The percolation thresholds have the highest values in the needle-like impurities, and somewhat lower values in the angled impurities. On the other hand, in the presence of the triangular impurities, the percolation threshold decreases with the concentration of impurities. |
---|---|
ISSN: | 1742-5468 1742-5468 |
DOI: | 10.1088/1742-5468/ad7851 |