Loading…

Research on Tool Wear Detection Based on Genetic Neural Network

To improve the accuracy of tool wear detection, this paper proposes a tool wear detection method based on genetic neural network. Firstly, the vibration signals during tool processing are collected, and these signals are preprocessed to eliminate background noise. Then, in addition to the time-frequ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2020-01, Vol.1449 (1), p.12068
Main Authors: Zeng, Shaojun, Liu, Songming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To improve the accuracy of tool wear detection, this paper proposes a tool wear detection method based on genetic neural network. Firstly, the vibration signals during tool processing are collected, and these signals are preprocessed to eliminate background noise. Then, in addition to the time-frequency analysis, the Ensemble Empirical Mode Decomposition which is more suitable for the processing of non-stationary random signals is also applied to extract tool wear sensitive features from signals. To reduce the computational complexity of the neural network, some minor components in the sensitive features can be omitted by kernel principal component analysis, leaving the principal components as the input of the neural network. Finally, aiming at the shortcomings of the BP neural network, the genetic algorithm is optimized in terms of chromosome coding, setting of control parameters and genetic operation, so that it can obtain better weights and thresholds to improve the BP neural network. The experimental result proves that the accuracy of BP neural network is 86.7% and that of genetic neural network is 96%. The tool wear detection method based on genetic neural network is more suitable for practical use.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1449/1/012068