Loading…
Spectral theorem in noncommutative field theories: Jacobi dynamics
Jacobi operators appear as kinetic operators of several classes of noncommutative field theories (NCFT) considered recently. This paper deals with the case of bounded Jacobi operators. A set of tools mainly issued from operator and spectral theory is given in a way applicable to the study of NCFT. A...
Saved in:
Published in: | Journal of physics. Conference series 2015-08, Vol.634 (1), p.12006 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Jacobi operators appear as kinetic operators of several classes of noncommutative field theories (NCFT) considered recently. This paper deals with the case of bounded Jacobi operators. A set of tools mainly issued from operator and spectral theory is given in a way applicable to the study of NCFT. As an illustration, this is applied to a gauge-fixed version of the induced gauge theory on the Moyal plane expanded around a symmetric vacuum. The characterization of the spectrum of the kinetic operator is given, showing a behavior somewhat similar to a massless theory. An attempt to characterize the noncommutative geometry related to the gauge fixed action is presented. Using a Dirac operator obtained from the kinetic operator, it is shown that one can construct an even, regular, weakly real spectral triple. This spectral triple does not define a noncommutative metric space for the Connes spectral distance. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/634/1/012006 |