Loading…
2D/3D buccal epithelial cell self-assembling as a tool for cell phenotype maintenance and fabrication of multilayered epithelial linings in vitro
Maintaining the epithelial status of cells in vitro and fabrication of a multilayered epithelial lining is one of the key problems in the therapy using cell technologies. When cultured in a monolayer, epithelial cells change their phenotype from epithelial to epithelial-mesenchymal or mesenchymal th...
Saved in:
Published in: | Biomedical materials (Bristol) 2018-07, Vol.13 (5), p.054104-054104 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Maintaining the epithelial status of cells in vitro and fabrication of a multilayered epithelial lining is one of the key problems in the therapy using cell technologies. When cultured in a monolayer, epithelial cells change their phenotype from epithelial to epithelial-mesenchymal or mesenchymal that makes it difficult to obtain a sufficient number of cells in a 2D culture and to use them in tissue engineering. Here, using buccal epithelial cells from the oral mucosa, we developed a novel approach to recover and maintain the stable cell phenotype and form a multilayered epithelial lining in vitro via the 2D/3D cell self-assembling. Transitioning the cells from the monolayer to non-adhesive 3D culture conditions led to formation of self-assembling spheroids, with restoration of their epithelial characteristics after epithelial-mesenchymal transition. In 7 days, the cells within spheroids restored the apical-basal polarity, and the formation of both tight (ZO1) and adherent (E-cadherin) intercellular junctions was shown. Thus, culturing buccal epithelial cells in a 3D system allowed us to recover and durably maintain the morphological and functional characteristics of epithelial cells. The multilayered epithelial lining formation was achieved after placing spheroids for 7 days onto a hybrid matrix, which consisted of collagen layers and reinforcing poly (lactide-co-glycolide) fibers and was proven promising for replacement of the urothelium. Thus, we offer an effective technique of forming multilayered epithelial linings on carrier-matrices using cell spheroids that was not previously described elsewhere and can find a wide range of applications in tissue engineering, replacement surgery, and regenerative medicine. |
---|---|
ISSN: | 1748-605X 1748-605X |
DOI: | 10.1088/1748-605X/aace1c |