Loading…
Tensorial dynamics on the space of quantum states
A geometric description of the space of states of a finite-dimensional quantum system and of the Markovian evolution associated with the Kossakowski-Lindblad operator is presented. This geometric setting is based on two composition laws on the space of observables defined by a pair of contravariant...
Saved in:
Published in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2017-09, Vol.50 (36), p.365301 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A geometric description of the space of states of a finite-dimensional quantum system and of the Markovian evolution associated with the Kossakowski-Lindblad operator is presented. This geometric setting is based on two composition laws on the space of observables defined by a pair of contravariant tensor fields. The first one is a Poisson tensor field that encodes the commutator product and allows us to develop a Hamiltonian mechanics. The other tensor field is symmetric, encodes the Jordan product and provides the variances and covariances of measures associated with the observables. This tensorial formulation of quantum systems is able to describe, in a natural way, the Markovian dynamical evolution as a vector field on the space of states. Therefore, it is possible to consider dynamical effects on non-linear physical quantities, such as entropies, purity and concurrence. In particular, in this work the tensorial formulation is used to consider the dynamical evolution of the symmetric and skew-symmetric tensors and to read off the corresponding limits as giving rise to a contraction of the initial Jordan and Lie products. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/aa8182 |