Loading…
Spin correlation functions, Ramus-like identities, and enumeration of constrained lattice walks and plane partitions
Relations between the mean values of distributions of flipped spins on periodic Heisenberg XX chain and some aspects of enumerative combinatorics are discussed. The Bethe vectors, which are the state-vectors of the model, are considered both as on- and off-shell. It is this approach that makes it po...
Saved in:
Published in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-06, Vol.55 (22), p.225002 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Relations between the mean values of distributions of flipped spins on periodic Heisenberg
XX
chain and some aspects of enumerative combinatorics are discussed. The Bethe vectors, which are the state-vectors of the model, are considered both as on- and off-shell. It is this approach that makes it possible to represent and to study the correlation functions in the form of non-intersecting nests of lattice walks and related plane partitions. We distinguish between two types of walkers, namely lock step models and random turns. Of particular interest is the connection of random turns walks and a circulant matrix. The determinantal representation for the norm-trace generating function of plane partitions with fixed height of diagonal parts is obtained as the expectation of the generating exponential over off-shell
N
-particle Bethe states. The asymptotics of the dynamical mean value of the generating exponential is calculated in the double scaling limit provided that the evolution parameter is large. It is shown that the amplitudes of the leading asymptotics depend on the number of diagonally constrained plane partitions. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8121/ac5363 |