Loading…

Island and lake size distributions in gradient percolation

The well known problem of gradient percolation has been revisited to study the probability distribution of island sizes. It is observed that like the ordinary percolation, this distribution is also described by a power law decaying function but the associated critical exponents are found to be diffe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2022-07, Vol.55 (26), p.264005
Main Author: Manna, S S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The well known problem of gradient percolation has been revisited to study the probability distribution of island sizes. It is observed that like the ordinary percolation, this distribution is also described by a power law decaying function but the associated critical exponents are found to be different. Because of the underlying gradient for the occupation probability, the average value of the island sizes also has a gradient. The variation of the average island size with the probability of occupation along the gradient has been studied together with its scaling analysis. Further, we have introduced and studied the gradient bond percolation and on studying the island size distribution statistics, we have obtained very similar results. We have also studied the characteristics of the diffusion profile of the particle system on a lattice which is initially half filled and half empty. Here also we observe the same value for the island size probability distribution exponent. Finally, the same study has been repeated for the nonlinear gradient percolation and the value of the island size distribution exponent is found to be a function of the strength of the nonlinear parameter.
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8121/ac72d6