Loading…
Valley Hall effect and nonlocal transport in strained graphene
Graphene subject to high levels of shear strain leads to strong pseudo-magnetic fields resulting in the emergence of pseudo-Landau levels. Here we show that, with modest levels of strain, graphene can also sustain a classical valley Hall effect (VHE) that can be detected in nonlocal transport measur...
Saved in:
Published in: | 2d materials 2017-06, Vol.4 (2), p.24007 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graphene subject to high levels of shear strain leads to strong pseudo-magnetic fields resulting in the emergence of pseudo-Landau levels. Here we show that, with modest levels of strain, graphene can also sustain a classical valley Hall effect (VHE) that can be detected in nonlocal transport measurements. We provide a theory of the strain-induced VHE starting from the quantum Boltzmann equation. This allows us to show that, averaging over short-range impurity configurations destroys quantum coherence between valleys, leaving the elastic scattering time and inter-valley scattering rate as the only parameters characterizing the transport theory. Using the theory, we compute the nonlocal resistance of a Hall bar device in the diffusive regime. Our theory is also relevant for the study of moderate strain effects in the (nonlocal) transport properties of other two-dimensional materials and van der Walls heterostructures. |
---|---|
ISSN: | 2053-1583 2053-1583 |
DOI: | 10.1088/2053-1583/aa5e9b |