Loading…
Electrochemical Reduction of Carbon Dioxide Using a Copper Rubeanate Metal Organic Framework
We synthesized a copper rubeanate metal organic framework (CR-MOF) which has the potential to improve the catalytic activity of electrochemical reduction of CO2 due to its characteristics of electronic conductivity, proton conductivity, dispersed reaction sites, and nanopores. Synthesized CR-MOF par...
Saved in:
Published in: | ECS electrochemistry letters 2012-08, Vol.1 (4), p.H17-H19 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We synthesized a copper rubeanate metal organic framework (CR-MOF) which has the potential to improve the catalytic activity of electrochemical reduction of CO2 due to its characteristics of electronic conductivity, proton conductivity, dispersed reaction sites, and nanopores. Synthesized CR-MOF particles were dropped on carbon paper (CP) to form a working electrode. The onset potential for CO2 reduction of a CR-MOF electrode was about 0.2 V more positive than that observed on a Cu metal electrode in an aqueous electrolyte solution. Our analysis of the reduction products during potentiostatic electrolysis showed formic acid (HCOOH) to be virtually the only CO2 reduction product on a CR-MOF electrode, whereas a Cu metal electrode generates a range of products. The quantity of products from the CR-MOF electrode was markedly greater (13-fold at −1.2 V vs. SHE) than that of a Cu metal electrode. Its stability was also confirmed. |
---|---|
ISSN: | 2162-8726 2162-8734 |
DOI: | 10.1149/2.001204eel |