Loading…

Astronomical Data of Atomic Shannon Entropies in Astrophysical Lorentzian Plasmas

The nonthermal effects on the variation of the Shannon entropy for the atomic states are investigated in astrophysical Lorentzian plasmas. The screened atomic wave functions, energy eigenvalues, and effective screening lengths for the hydrogen atom in Lorentzian plasmas are obtained by the Rayleigh-...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2019-01, Vol.871 (1), p.111
Main Authors: Lee, Myoung-Jae, Jung, Young-Dae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The nonthermal effects on the variation of the Shannon entropy for the atomic states are investigated in astrophysical Lorentzian plasmas. The screened atomic wave functions, energy eigenvalues, and effective screening lengths for the hydrogen atom in Lorentzian plasmas are obtained by the Rayleigh-Ritz method. The Shannon entropies for the ground and excited states in astrophysical Lorentzian plasmas are also obtained as functions of the spectral index, effective screening lengths, and plasma parameters including the radial and angular parts. It is shown that the nonthermal characters of the Lorentzian plasma suppresses the entropy changes in the ground state as well as in the excited states. In addition, it is found that the entropy change in excited states is more effective than that in the ground state in Lorentzian astrophysical plasmas. Moreover, it is shown that the entropy change is independent of the magnetic quantum number of the state because the angular parts of Shannon entropy are unchanged due to the influence of nonthermal character and plasma screening in astrophysical Lorentzian plasmas.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/aaf73c