Loading…
Atomic force microscopy of partially polished and epi-ready c-plane GaN substrates obtained by an ammonothermal method
In this paper, the propagation of scratches on the surfaces of c-plane GaN substrates due to slicing and polishing is studied through atomic force microscopy (AFM). For epi-ready substrates, the AFM images confirm a flat surface with atomic step roughness, while for partially polished GaN substrates...
Saved in:
Published in: | Applied physics express 2014-05, Vol.7 (5), p.55504 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the propagation of scratches on the surfaces of c-plane GaN substrates due to slicing and polishing is studied through atomic force microscopy (AFM). For epi-ready substrates, the AFM images confirm a flat surface with atomic step roughness, while for partially polished GaN substrates, many scratches are visible in the AFM images. A Fourier analysis of the AFM images shows that the scratches propagate more easily along the {m-plane} and {a-plane} directions on a c-plane GaN surface. Most of these scratches are generated by the mechanical slicing of GaN crystals and/or non-optimal polishing conditions. A proper chemomechanical polishing process is able to remove the damaged material and obtain a flat surface with atomic step roughness. This observation is evidence for the anisotropy of mechanical properties of GaN crystals in the microscale range. |
---|---|
ISSN: | 1882-0778 1882-0786 |
DOI: | 10.7567/APEX.7.055504 |