Loading…
Matrix Lie Algebras and Integrable Couplings
Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, the integrable couplings and the Hamiltonian structure of Giachetti-Johnson hierarch...
Saved in:
Published in: | Communications in theoretical physics 2006-11, Vol.46 (5), p.812-818 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, the integrable couplings and the Hamiltonian structure of Giachetti-Johnson hierarchy and a new integrable system are obtained, respectively. |
---|---|
ISSN: | 0253-6102 |
DOI: | 10.1088/0253-6102/46/5/009 |