Loading…

Damage detection in composite materials using Lamb wave methods

Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents part of an experimental and analytical survey of candidate methods for in situ damage detection of composite materials. Experimental results are presented for the application of L...

Full description

Saved in:
Bibliographic Details
Published in:Smart materials and structures 2002-04, Vol.11 (2), p.269-278
Main Authors: Kessler, Seth S, Spearing, S Mark, Soutis, Constantinos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents part of an experimental and analytical survey of candidate methods for in situ damage detection of composite materials. Experimental results are presented for the application of Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage modes, including delamination, transverse ply cracks, and through-holes. Linear wave scans were performed on narrow laminated specimens and sandwich beams with various cores by monitoring the transmitted waves with piezoceramic sensors. Optimal actuator and sensor configurations were devised through experimentation, and various types of driving signals were explored. These experiments provided a procedure capable of easily and accurately determining the time of flight of a Lamb wave pulse between an actuator and sensor. Lamb wave techniques provide more information about damage presence and severity than previously tested methods (frequency response techniques), and provide the possibility of determining damage location due to their local response nature. These methods may prove suitable for structural health monitoring applications since they travel long distances and can be applied with conformable piezoelectric actuators and sensors that require little power. (Author)
ISSN:0964-1726
1361-665X
DOI:10.1088/0964-1726/11/2/310