Loading…
Aerodynamic testing of a smart composite wing using fiber-optic strain sensing and neural networks
The feasibility of developing a smart wing using composite materials, fiber-optic sensors, and neural networks is investigated. Strain and aerodynamic lift force induced in a wing model at different air speeds and angles-of-attack are experimentally determined in an open circuit wind tunnel. The sma...
Saved in:
Published in: | Smart materials and structures 2000-12, Vol.9 (6), p.767-773 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The feasibility of developing a smart wing using composite materials, fiber-optic sensors, and neural networks is investigated. Strain and aerodynamic lift force induced in a wing model at different air speeds and angles-of-attack are experimentally determined in an open circuit wind tunnel. The smart wing model consisted of a glass/epoxy composite beam with an interferometric fiber-optic sensor mounted at the wing root. The strains were correlated to the set of air velocities and angles-of-attack using a feed forward back propagation neural network approach. The resulting neural network simulation could predict the experimental strain in real time with an average error of 3.17%. Finite-element analysis prediction of aerodynamic lift calculated using measured strain at the wing root generally agreed with thin airfoil theory, the differences being attributed to uncertainty in composite material properties. |
---|---|
ISSN: | 0964-1726 1361-665X |
DOI: | 10.1088/0964-1726/9/6/305 |