Loading…

The Solar Twin Planet Search

Context. Solar twins are stars with similar stellar (surface) parameters to the Sun that can have a wide range of ages. This provides an opportunity to analyze the variation of their chemical abundances with age. Nissen (2015, A&A, 579, A52) recently suggested that the abundances of the s-proces...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2016-06, Vol.590
Main Authors: Tucci Maia, M., Ramírez, I., Meléndez, J., Bedell, M., Bean, J. L., Asplund, M.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Context. Solar twins are stars with similar stellar (surface) parameters to the Sun that can have a wide range of ages. This provides an opportunity to analyze the variation of their chemical abundances with age. Nissen (2015, A&A, 579, A52) recently suggested that the abundances of the s-process element Y and the α-element Mg could be used to estimate stellar ages. Aims. This paper aims to determine with high precision the Y, Mg, and Fe abundances for a sample of 88 solar twins that span a broad age range (0.3–10.0 Gyr) and investigate their use for estimating ages. Methods. We obtained high-quality Magellan Inamori Kyocera Echelle (MIKE) spectra and determined Y and Mg abundances using equivalent widths and a line-by-line differential method within a 1D LTE framework. Stellar parameters and iron abundances were measured in Paper I of this series for all stars, but a few (three) required a small revision. Results. The [Y/Mg] ratio shows a strong correlation with age. It has a slope of −0.041 ± 0.001 dex/Gyr and a significance of 41σ. This is in excellent agreement with the relation first proposed by Nissen (2015). We found some outliers that turned out to be binaries where mass transfer may have enhanced the yttrium abundance. Given a precise measurement of [Y/Mg] with typical error of 0.02 dex in solar twins, our formula can be used to determine a stellar age with ~0.8 Gyr precision in the 0 to 10 Gyr range.
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361/201527848