Loading…

n-fold symmetric two-dimensional shapes evolving by surface diffusion

We present theoretical and numerical results concerning the surface-diffusion-driven evolution of closed 2D interfaces having n-fold rotational symmetry such as gear- and star-type shapes. We find a family of approximate solutions depending on a few parameters; by solving the time dependence of such...

Full description

Saved in:
Bibliographic Details
Published in:Europhysics letters 2013-11, Vol.104 (3), p.36003
Main Author: Castez, Marcos F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present theoretical and numerical results concerning the surface-diffusion-driven evolution of closed 2D interfaces having n-fold rotational symmetry such as gear- and star-type shapes. We find a family of approximate solutions depending on a few parameters; by solving the time dependence of such parameters, we can predict the evolution of interface morphology in close agreement with numerical results. Finally, we show how our findings can be applied in some practical cases to get a mathematical description of interface morphology just by determining a few characteristic features.
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/104/36003