Loading…

Regulation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldDH) in Aspergillus nidulans

There is a single major alcohol dehydrogenase (ADH) and a single major aldehyde dehydrogenase (AldDH) in Aspergillus nidulans. Both ADH and AldDH are induced by ethanol and by acetaldehyde and both are subject to carbon catabolite repression. ADH and AldDH are necessary for the utilization of ethano...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society of London. Series B, Biological sciences Biological sciences, 1983-02, Vol.217 (1208), p.243-264
Main Authors: Pateman, John Arthur Joseph, Doy, C. H., Olsen, J. E., Norris, U., Creaser, E. H., Hynes, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There is a single major alcohol dehydrogenase (ADH) and a single major aldehyde dehydrogenase (AldDH) in Aspergillus nidulans. Both ADH and AldDH are induced by ethanol and by acetaldehyde and both are subject to carbon catabolite repression. ADH and AldDH are necessary for the utilization of ethanol and of threonine, indicating that both compounds are utilized via acetaldehyde. ADH and AldDH each give a single major activity band on gel electrophoresis. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of cell extracts shows at least two similar ADH polypeptides of approximate relative molecular mass (r. m. m.) 41000 and two similar AldDH polypeptides of approximate r. m. m. 57000. The in vitro translation of mRNA from induced, carbon derepressed wild-type cells gives up to three ADH polypeptides in the r. m. m. range 39000-43000 and an AldDH polypeptide of approximate r. m. m. 57000. The mRNA from uninduced, carbon repressed wild-type cells does not direct the synthesis of the ADH and AldDH polypeptides. This indicates that the regulation of ADH and AldDH is at the level of transcription and/or post-transcriptional modification. The probable explanation of the multiple ADH polypeptides is post-transcriptional modification of the mRNA. Allyl alcohol mutants were made by using diepoxyoctane and γ-rays as mutagens. There are two classes, alcA and alcR. Neither class can utilize ethanol or threonine as a carbon source. The alcA mutants lack normal ADH and are recessive. Of the 47 alcA mutants examined 39 do not make the ADH polypeptides while eight do so. Therefore alcA is the structural gene for ADH. The two alcA mutants tested do not make functional mRNA for ADH. The alcR mutants lack both ADH and AldDH and are recessive. No alcR mutants make the ADH or the AldDH polypeptides. The three alcR mutants tested do not make functional ADH or AldDH mRNA. The mutant alcR125 is a nonsense mutant, which establishes that alcR codes for a protein. The alcA and alcR genes are adjacent on chromosome VII and a preliminary fine-structure map of the alcA gene has been made. Three mutants that cannot utilize ethanol or threonine and have ADH, but lack AldDH, define a gene AldA on chromosome VIII. The aldA23 mutant makes the AldDH polypeptides, the other two aldA mutants do not. Therefore aldA is probably the structural gene for AldDH. Our current hypothesis is that alcA and aldA are the structural genes for ADH and AldDH respectively and alcR is a transacting regul
ISSN:0080-4649
0962-8452
0950-1193
2053-9193
1471-2954
DOI:10.1098/rspb.1983.0009