Loading…
Regulation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldDH) in Aspergillus nidulans
There is a single major alcohol dehydrogenase (ADH) and a single major aldehyde dehydrogenase (AldDH) in Aspergillus nidulans. Both ADH and AldDH are induced by ethanol and by acetaldehyde and both are subject to carbon catabolite repression. ADH and AldDH are necessary for the utilization of ethano...
Saved in:
Published in: | Proceedings of the Royal Society of London. Series B, Biological sciences Biological sciences, 1983-02, Vol.217 (1208), p.243-264 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c621t-23687a00dd3ebbc217f06635d10a3ef103477d4e6f5b635ba9015269c750bc803 |
---|---|
cites | cdi_FETCH-LOGICAL-c621t-23687a00dd3ebbc217f06635d10a3ef103477d4e6f5b635ba9015269c750bc803 |
container_end_page | 264 |
container_issue | 1208 |
container_start_page | 243 |
container_title | Proceedings of the Royal Society of London. Series B, Biological sciences |
container_volume | 217 |
creator | Pateman, John Arthur Joseph Doy, C. H. Olsen, J. E. Norris, U. Creaser, E. H. Hynes, M. |
description | There is a single major alcohol dehydrogenase (ADH) and a single major aldehyde dehydrogenase (AldDH) in Aspergillus nidulans. Both ADH and AldDH are induced by ethanol and by acetaldehyde and both are subject to carbon catabolite repression. ADH and AldDH are necessary for the utilization of ethanol and of threonine, indicating that both compounds are utilized via acetaldehyde. ADH and AldDH each give a single major activity band on gel electrophoresis. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of cell extracts shows at least two similar ADH polypeptides of approximate relative molecular mass (r. m. m.) 41000 and two similar AldDH polypeptides of approximate r. m. m. 57000. The in vitro translation of mRNA from induced, carbon derepressed wild-type cells gives up to three ADH polypeptides in the r. m. m. range 39000-43000 and an AldDH polypeptide of approximate r. m. m. 57000. The mRNA from uninduced, carbon repressed wild-type cells does not direct the synthesis of the ADH and AldDH polypeptides. This indicates that the regulation of ADH and AldDH is at the level of transcription and/or post-transcriptional modification. The probable explanation of the multiple ADH polypeptides is post-transcriptional modification of the mRNA. Allyl alcohol mutants were made by using diepoxyoctane and γ-rays as mutagens. There are two classes, alcA and alcR. Neither class can utilize ethanol or threonine as a carbon source. The alcA mutants lack normal ADH and are recessive. Of the 47 alcA mutants examined 39 do not make the ADH polypeptides while eight do so. Therefore alcA is the structural gene for ADH. The two alcA mutants tested do not make functional mRNA for ADH. The alcR mutants lack both ADH and AldDH and are recessive. No alcR mutants make the ADH or the AldDH polypeptides. The three alcR mutants tested do not make functional ADH or AldDH mRNA. The mutant alcR125 is a nonsense mutant, which establishes that alcR codes for a protein. The alcA and alcR genes are adjacent on chromosome VII and a preliminary fine-structure map of the alcA gene has been made. Three mutants that cannot utilize ethanol or threonine and have ADH, but lack AldDH, define a gene AldA on chromosome VIII. The aldA23 mutant makes the AldDH polypeptides, the other two aldA mutants do not. Therefore aldA is probably the structural gene for AldDH. Our current hypothesis is that alcA and aldA are the structural genes for ADH and AldDH respectively and alcR is a transacting regul |
doi_str_mv | 10.1098/rspb.1983.0009 |
format | article |
fullrecord | <record><control><sourceid>jstor_istex</sourceid><recordid>TN_cdi_istex_primary_ark_67375_V84_H8HWSN93_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>35777</jstor_id><sourcerecordid>35777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621t-23687a00dd3ebbc217f06635d10a3ef103477d4e6f5b635ba9015269c750bc803</originalsourceid><addsrcrecordid>eNp9kM2P0zAQxSMEWsrClQMSIicEh5SxnTj2CZXlo0grQFsWjpYTO61LGgc7Acpfj5NUlaoVe4qc93tvZl4UPUYwR8DZK-fbYo44I3MA4HeiGYaMJBxxcjeaATBIUpry-9ED77cAKeWcnEVnFBFMOJlF6kqv-1p2xjaxrWJZl3Zj61jpzV45u9aN9Dp-sXi7fBnLRgV9VPQNoFYDYpp44Vvt1qauex83RoXsxj-M7lWy9vrR4XseXb9_9_VimVx-_vDxYnGZlBSjLsGEslwCKEV0UZQY5RVQSjKFQBJdISBpnqtU0yorwu9CckAZprzMMyhKBuQ8ej7lts7-7LXvxM74UtdhB217LxikBDPIAzifwNJZ752uROvMTrq9QCCGWsVQqxhqFUOtwfD0kNwXO62O-KHHoJNJd3YfLrSl0d1ebG3vmvD8f6q_zXW1-vIG8Yz_Ck0YhIEJYAQBxSwl4q9px7gBEAEQxvteixE7HXNz6pNp6tZ31h1PIVmeD80kk2h8p_8cRel-CJqTPBPfWCqWbPl99YkTkQX-9cRvzHrz2zgtTm4ZR5e26XTTjVuO--Gwf9XXtWhVFRLQrQl23zpfnJiD59nkqaQVcu2MF9crDIgAzjhNU0r-AeTh8mI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80432807</pqid></control><display><type>article</type><title>Regulation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldDH) in Aspergillus nidulans</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Pateman, John Arthur Joseph ; Doy, C. H. ; Olsen, J. E. ; Norris, U. ; Creaser, E. H. ; Hynes, M.</creator><creatorcontrib>Pateman, John Arthur Joseph ; Doy, C. H. ; Olsen, J. E. ; Norris, U. ; Creaser, E. H. ; Hynes, M.</creatorcontrib><description>There is a single major alcohol dehydrogenase (ADH) and a single major aldehyde dehydrogenase (AldDH) in Aspergillus nidulans. Both ADH and AldDH are induced by ethanol and by acetaldehyde and both are subject to carbon catabolite repression. ADH and AldDH are necessary for the utilization of ethanol and of threonine, indicating that both compounds are utilized via acetaldehyde. ADH and AldDH each give a single major activity band on gel electrophoresis. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of cell extracts shows at least two similar ADH polypeptides of approximate relative molecular mass (r. m. m.) 41000 and two similar AldDH polypeptides of approximate r. m. m. 57000. The in vitro translation of mRNA from induced, carbon derepressed wild-type cells gives up to three ADH polypeptides in the r. m. m. range 39000-43000 and an AldDH polypeptide of approximate r. m. m. 57000. The mRNA from uninduced, carbon repressed wild-type cells does not direct the synthesis of the ADH and AldDH polypeptides. This indicates that the regulation of ADH and AldDH is at the level of transcription and/or post-transcriptional modification. The probable explanation of the multiple ADH polypeptides is post-transcriptional modification of the mRNA. Allyl alcohol mutants were made by using diepoxyoctane and γ-rays as mutagens. There are two classes, alcA and alcR. Neither class can utilize ethanol or threonine as a carbon source. The alcA mutants lack normal ADH and are recessive. Of the 47 alcA mutants examined 39 do not make the ADH polypeptides while eight do so. Therefore alcA is the structural gene for ADH. The two alcA mutants tested do not make functional mRNA for ADH. The alcR mutants lack both ADH and AldDH and are recessive. No alcR mutants make the ADH or the AldDH polypeptides. The three alcR mutants tested do not make functional ADH or AldDH mRNA. The mutant alcR125 is a nonsense mutant, which establishes that alcR codes for a protein. The alcA and alcR genes are adjacent on chromosome VII and a preliminary fine-structure map of the alcA gene has been made. Three mutants that cannot utilize ethanol or threonine and have ADH, but lack AldDH, define a gene AldA on chromosome VIII. The aldA23 mutant makes the AldDH polypeptides, the other two aldA mutants do not. Therefore aldA is probably the structural gene for AldDH. Our current hypothesis is that alcA and aldA are the structural genes for ADH and AldDH respectively and alcR is a transacting regulatory gene coding for a protein whose function is necessary for the expression of the alcA and aldA genes.</description><identifier>ISSN: 0080-4649</identifier><identifier>ISSN: 0962-8452</identifier><identifier>ISSN: 0950-1193</identifier><identifier>EISSN: 2053-9193</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.1983.0009</identifier><identifier>PMID: 6132393</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Acetates ; Alcohol Oxidoreductases - genetics ; Alcohol Oxidoreductases - metabolism ; Alcohols ; Aldehyde Oxidoreductases - metabolism ; Alleles ; Aspergillus nidulans - enzymology ; Aspergillus nidulans - genetics ; Electrophoresis, Polyacrylamide Gel ; Enzyme activity ; Ethanol ; fungi ; Gels ; Genes ; Messenger RNA ; Molecular Weight ; Mutation ; Repression ; RNA</subject><ispartof>Proceedings of the Royal Society of London. Series B, Biological sciences, 1983-02, Vol.217 (1208), p.243-264</ispartof><rights>Copyright 1983 The Royal Society</rights><rights>Scanned images copyright © 2017, Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c621t-23687a00dd3ebbc217f06635d10a3ef103477d4e6f5b635ba9015269c750bc803</citedby><cites>FETCH-LOGICAL-c621t-23687a00dd3ebbc217f06635d10a3ef103477d4e6f5b635ba9015269c750bc803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/35777$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/35777$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6132393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pateman, John Arthur Joseph</creatorcontrib><creatorcontrib>Doy, C. H.</creatorcontrib><creatorcontrib>Olsen, J. E.</creatorcontrib><creatorcontrib>Norris, U.</creatorcontrib><creatorcontrib>Creaser, E. H.</creatorcontrib><creatorcontrib>Hynes, M.</creatorcontrib><title>Regulation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldDH) in Aspergillus nidulans</title><title>Proceedings of the Royal Society of London. Series B, Biological sciences</title><addtitle>Proc. R. Soc. Lond. B</addtitle><addtitle>Proc. R. Soc. Lond. B</addtitle><description>There is a single major alcohol dehydrogenase (ADH) and a single major aldehyde dehydrogenase (AldDH) in Aspergillus nidulans. Both ADH and AldDH are induced by ethanol and by acetaldehyde and both are subject to carbon catabolite repression. ADH and AldDH are necessary for the utilization of ethanol and of threonine, indicating that both compounds are utilized via acetaldehyde. ADH and AldDH each give a single major activity band on gel electrophoresis. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of cell extracts shows at least two similar ADH polypeptides of approximate relative molecular mass (r. m. m.) 41000 and two similar AldDH polypeptides of approximate r. m. m. 57000. The in vitro translation of mRNA from induced, carbon derepressed wild-type cells gives up to three ADH polypeptides in the r. m. m. range 39000-43000 and an AldDH polypeptide of approximate r. m. m. 57000. The mRNA from uninduced, carbon repressed wild-type cells does not direct the synthesis of the ADH and AldDH polypeptides. This indicates that the regulation of ADH and AldDH is at the level of transcription and/or post-transcriptional modification. The probable explanation of the multiple ADH polypeptides is post-transcriptional modification of the mRNA. Allyl alcohol mutants were made by using diepoxyoctane and γ-rays as mutagens. There are two classes, alcA and alcR. Neither class can utilize ethanol or threonine as a carbon source. The alcA mutants lack normal ADH and are recessive. Of the 47 alcA mutants examined 39 do not make the ADH polypeptides while eight do so. Therefore alcA is the structural gene for ADH. The two alcA mutants tested do not make functional mRNA for ADH. The alcR mutants lack both ADH and AldDH and are recessive. No alcR mutants make the ADH or the AldDH polypeptides. The three alcR mutants tested do not make functional ADH or AldDH mRNA. The mutant alcR125 is a nonsense mutant, which establishes that alcR codes for a protein. The alcA and alcR genes are adjacent on chromosome VII and a preliminary fine-structure map of the alcA gene has been made. Three mutants that cannot utilize ethanol or threonine and have ADH, but lack AldDH, define a gene AldA on chromosome VIII. The aldA23 mutant makes the AldDH polypeptides, the other two aldA mutants do not. Therefore aldA is probably the structural gene for AldDH. Our current hypothesis is that alcA and aldA are the structural genes for ADH and AldDH respectively and alcR is a transacting regulatory gene coding for a protein whose function is necessary for the expression of the alcA and aldA genes.</description><subject>Acetates</subject><subject>Alcohol Oxidoreductases - genetics</subject><subject>Alcohol Oxidoreductases - metabolism</subject><subject>Alcohols</subject><subject>Aldehyde Oxidoreductases - metabolism</subject><subject>Alleles</subject><subject>Aspergillus nidulans - enzymology</subject><subject>Aspergillus nidulans - genetics</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Enzyme activity</subject><subject>Ethanol</subject><subject>fungi</subject><subject>Gels</subject><subject>Genes</subject><subject>Messenger RNA</subject><subject>Molecular Weight</subject><subject>Mutation</subject><subject>Repression</subject><subject>RNA</subject><issn>0080-4649</issn><issn>0962-8452</issn><issn>0950-1193</issn><issn>2053-9193</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNp9kM2P0zAQxSMEWsrClQMSIicEh5SxnTj2CZXlo0grQFsWjpYTO61LGgc7Acpfj5NUlaoVe4qc93tvZl4UPUYwR8DZK-fbYo44I3MA4HeiGYaMJBxxcjeaATBIUpry-9ED77cAKeWcnEVnFBFMOJlF6kqv-1p2xjaxrWJZl3Zj61jpzV45u9aN9Dp-sXi7fBnLRgV9VPQNoFYDYpp44Vvt1qauex83RoXsxj-M7lWy9vrR4XseXb9_9_VimVx-_vDxYnGZlBSjLsGEslwCKEV0UZQY5RVQSjKFQBJdISBpnqtU0yorwu9CckAZprzMMyhKBuQ8ej7lts7-7LXvxM74UtdhB217LxikBDPIAzifwNJZ752uROvMTrq9QCCGWsVQqxhqFUOtwfD0kNwXO62O-KHHoJNJd3YfLrSl0d1ebG3vmvD8f6q_zXW1-vIG8Yz_Ck0YhIEJYAQBxSwl4q9px7gBEAEQxvteixE7HXNz6pNp6tZ31h1PIVmeD80kk2h8p_8cRel-CJqTPBPfWCqWbPl99YkTkQX-9cRvzHrz2zgtTm4ZR5e26XTTjVuO--Gwf9XXtWhVFRLQrQl23zpfnJiD59nkqaQVcu2MF9crDIgAzjhNU0r-AeTh8mI</recordid><startdate>19830222</startdate><enddate>19830222</enddate><creator>Pateman, John Arthur Joseph</creator><creator>Doy, C. H.</creator><creator>Olsen, J. E.</creator><creator>Norris, U.</creator><creator>Creaser, E. H.</creator><creator>Hynes, M.</creator><general>The Royal Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19830222</creationdate><title>Regulation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldDH) in Aspergillus nidulans</title><author>Pateman, John Arthur Joseph ; Doy, C. H. ; Olsen, J. E. ; Norris, U. ; Creaser, E. H. ; Hynes, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621t-23687a00dd3ebbc217f06635d10a3ef103477d4e6f5b635ba9015269c750bc803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Acetates</topic><topic>Alcohol Oxidoreductases - genetics</topic><topic>Alcohol Oxidoreductases - metabolism</topic><topic>Alcohols</topic><topic>Aldehyde Oxidoreductases - metabolism</topic><topic>Alleles</topic><topic>Aspergillus nidulans - enzymology</topic><topic>Aspergillus nidulans - genetics</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Enzyme activity</topic><topic>Ethanol</topic><topic>fungi</topic><topic>Gels</topic><topic>Genes</topic><topic>Messenger RNA</topic><topic>Molecular Weight</topic><topic>Mutation</topic><topic>Repression</topic><topic>RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pateman, John Arthur Joseph</creatorcontrib><creatorcontrib>Doy, C. H.</creatorcontrib><creatorcontrib>Olsen, J. E.</creatorcontrib><creatorcontrib>Norris, U.</creatorcontrib><creatorcontrib>Creaser, E. H.</creatorcontrib><creatorcontrib>Hynes, M.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the Royal Society of London. Series B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pateman, John Arthur Joseph</au><au>Doy, C. H.</au><au>Olsen, J. E.</au><au>Norris, U.</au><au>Creaser, E. H.</au><au>Hynes, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldDH) in Aspergillus nidulans</atitle><jtitle>Proceedings of the Royal Society of London. Series B, Biological sciences</jtitle><stitle>Proc. R. Soc. Lond. B</stitle><addtitle>Proc. R. Soc. Lond. B</addtitle><date>1983-02-22</date><risdate>1983</risdate><volume>217</volume><issue>1208</issue><spage>243</spage><epage>264</epage><pages>243-264</pages><issn>0080-4649</issn><issn>0962-8452</issn><issn>0950-1193</issn><eissn>2053-9193</eissn><eissn>1471-2954</eissn><abstract>There is a single major alcohol dehydrogenase (ADH) and a single major aldehyde dehydrogenase (AldDH) in Aspergillus nidulans. Both ADH and AldDH are induced by ethanol and by acetaldehyde and both are subject to carbon catabolite repression. ADH and AldDH are necessary for the utilization of ethanol and of threonine, indicating that both compounds are utilized via acetaldehyde. ADH and AldDH each give a single major activity band on gel electrophoresis. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of cell extracts shows at least two similar ADH polypeptides of approximate relative molecular mass (r. m. m.) 41000 and two similar AldDH polypeptides of approximate r. m. m. 57000. The in vitro translation of mRNA from induced, carbon derepressed wild-type cells gives up to three ADH polypeptides in the r. m. m. range 39000-43000 and an AldDH polypeptide of approximate r. m. m. 57000. The mRNA from uninduced, carbon repressed wild-type cells does not direct the synthesis of the ADH and AldDH polypeptides. This indicates that the regulation of ADH and AldDH is at the level of transcription and/or post-transcriptional modification. The probable explanation of the multiple ADH polypeptides is post-transcriptional modification of the mRNA. Allyl alcohol mutants were made by using diepoxyoctane and γ-rays as mutagens. There are two classes, alcA and alcR. Neither class can utilize ethanol or threonine as a carbon source. The alcA mutants lack normal ADH and are recessive. Of the 47 alcA mutants examined 39 do not make the ADH polypeptides while eight do so. Therefore alcA is the structural gene for ADH. The two alcA mutants tested do not make functional mRNA for ADH. The alcR mutants lack both ADH and AldDH and are recessive. No alcR mutants make the ADH or the AldDH polypeptides. The three alcR mutants tested do not make functional ADH or AldDH mRNA. The mutant alcR125 is a nonsense mutant, which establishes that alcR codes for a protein. The alcA and alcR genes are adjacent on chromosome VII and a preliminary fine-structure map of the alcA gene has been made. Three mutants that cannot utilize ethanol or threonine and have ADH, but lack AldDH, define a gene AldA on chromosome VIII. The aldA23 mutant makes the AldDH polypeptides, the other two aldA mutants do not. Therefore aldA is probably the structural gene for AldDH. Our current hypothesis is that alcA and aldA are the structural genes for ADH and AldDH respectively and alcR is a transacting regulatory gene coding for a protein whose function is necessary for the expression of the alcA and aldA genes.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>6132393</pmid><doi>10.1098/rspb.1983.0009</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0080-4649 |
ispartof | Proceedings of the Royal Society of London. Series B, Biological sciences, 1983-02, Vol.217 (1208), p.243-264 |
issn | 0080-4649 0962-8452 0950-1193 2053-9193 1471-2954 |
language | eng |
recordid | cdi_istex_primary_ark_67375_V84_H8HWSN93_5 |
source | JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Acetates Alcohol Oxidoreductases - genetics Alcohol Oxidoreductases - metabolism Alcohols Aldehyde Oxidoreductases - metabolism Alleles Aspergillus nidulans - enzymology Aspergillus nidulans - genetics Electrophoresis, Polyacrylamide Gel Enzyme activity Ethanol fungi Gels Genes Messenger RNA Molecular Weight Mutation Repression RNA |
title | Regulation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldDH) in Aspergillus nidulans |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20alcohol%20dehydrogenase%20(ADH)%20and%20aldehyde%20dehydrogenase%20(AldDH)%20in%20Aspergillus%20nidulans&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20London.%20Series%20B,%20Biological%20sciences&rft.au=Pateman,%20John%20Arthur%20Joseph&rft.date=1983-02-22&rft.volume=217&rft.issue=1208&rft.spage=243&rft.epage=264&rft.pages=243-264&rft.issn=0080-4649&rft.eissn=2053-9193&rft_id=info:doi/10.1098/rspb.1983.0009&rft_dat=%3Cjstor_istex%3E35777%3C/jstor_istex%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c621t-23687a00dd3ebbc217f06635d10a3ef103477d4e6f5b635ba9015269c750bc803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=80432807&rft_id=info:pmid/6132393&rft_jstor_id=35777&rfr_iscdi=true |