Loading…

The Space Telescope Imaging Spectrograph Design1

The Space Telescope Imaging Spectrograph (STIS) instrument was installed on theHubble Space Telescope(HST) during the second servicing mission, in 1997 February. Four bands cover the wavelength range of 115–1000 nm, with spectral resolving powers between 26 and 200,000. Camera modes are used for tar...

Full description

Saved in:
Bibliographic Details
Published in:Publications of the Astronomical Society of the Pacific 1998-10, Vol.110 (752), p.1183-1204
Main Authors: Woodgate, B. E., Kimble, R. A., Bowers, C. W., Kraemer, S., Kaiser, M. E., Danks, A. C., Grady, J. F., Loiacono, J. J., Brumfield, M., Feinberg, L., Gull, T. R., Heap, S. R., Maran, S. P., Lindler, D., Hood, D., Meyer, W., VanHouten, C., Argabright, V., Franka, S., Bybee, R., Dorn, D., Bottema, M., Woodruff, R., Michika, D., Sullivan, J., Hetlinger, J., Ludtke, C., Stocker, R., Delamere, A., Rose, D., Becker, I., Garner, H., Timothy, J. G., Blouke, M., Joseph, C. L., Hartig, G., Green, R. F., Jenkins, E. B., Linsky, J. L., Hutchings, J. B., Moos, H. W., Boggess, A., Roesler, F., Weistrop, D.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Space Telescope Imaging Spectrograph (STIS) instrument was installed on theHubble Space Telescope(HST) during the second servicing mission, in 1997 February. Four bands cover the wavelength range of 115–1000 nm, with spectral resolving powers between 26 and 200,000. Camera modes are used for target acquisition and deep imaging. Correction forHST's spherical aberration and astigmatism is included. The 115–170 nm range is covered by a CsI MAMA (Multianode Microchannel Array) detector and the 165–310 nm range by a Cs2Te MAMA, each with a format of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $2048\times 2048$ \end{document} pixels, while the 305–555 and 550–1000 nm ranges are covered by a single CCD with a format of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $1024\times 1024$ \end{document} pixels. The multiplexing advantage of using these two‐dimensional detectors compared with the \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $1\times 512$ \end{document} pixel detectors of the first‐generation spectrographs is 1 or 2
ISSN:0004-6280
1538-3873
DOI:10.1086/316243