Loading…
Regulation of Golgi structure and secretion by receptor-induced G protein βγ complex translocation
We show that receptor induced G protein βγ subunit translocation from the plasma membrane to the Golgi allows a receptor to initiate fragmentation and regulate secretion. A lung epithelial cell line, A549, was shown to contain an endogenous translocating G protein γ subunit and exhibit receptor-indu...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2010-06, Vol.107 (25), p.11417-11422 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that receptor induced G protein βγ subunit translocation from the plasma membrane to the Golgi allows a receptor to initiate fragmentation and regulate secretion. A lung epithelial cell line, A549, was shown to contain an endogenous translocating G protein γ subunit and exhibit receptor-induced Golgi fragmentation. Receptor-induced Golgi fragmentation was inhibited by a shRNA specific to the endogenous translocating γ subunit. A kinase defective protein kinase D and a phospholipase C β inhibitor blocked receptor-induced Golgi fragmentation, suggesting a role for this process in secretion. Consistent with βγ translocation dependence, fragmentation induced by receptor activation was inhibited by a dominant negative nontranslocating γ3. Insulin secretion was shown to be induced by muscarinic receptor activation in a pancreatic β cell line, NIT-1. Induction of insulin secretion was also inhibited by the dominant negative γ3 subunit consistent with the Golgi fragmentation induced by βγ complex translocation playing a role in secretion. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1003042107 |