Loading…

Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals

Quorum sensing (QS) using N-acyl homoserine lactones (AHLs) as signal molecules is a common strategy used by diverse Gram-negative bacteria. A widespread mechanism of AHL sensing involves binding of these molecules by cytosolic LuxR-type transcriptional regulators, which requires uptake of external...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2014-07, Vol.111 (29), p.10702-10707
Main Authors: Krol, Elizaveta, Becker, Anke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c591t-e2254c93ab4f7e1ef2bd6cd80574a4bcc24c97b5042a28a31a95d8ee5a1659003
cites cdi_FETCH-LOGICAL-c591t-e2254c93ab4f7e1ef2bd6cd80574a4bcc24c97b5042a28a31a95d8ee5a1659003
container_end_page 10707
container_issue 29
container_start_page 10702
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Krol, Elizaveta
Becker, Anke
description Quorum sensing (QS) using N-acyl homoserine lactones (AHLs) as signal molecules is a common strategy used by diverse Gram-negative bacteria. A widespread mechanism of AHL sensing involves binding of these molecules by cytosolic LuxR-type transcriptional regulators, which requires uptake of external AHLs. The outer membrane is supposed to be an efficient barrier for diffusion of long-chain AHLs. Here we report evidence that in Sinorhizobium meliloti , sensing of AHLs with acyl chains composed of 14 or more carbons is facilitated by the outer membrane protein FadL Sₘ, a homolog of the Escherichia coli FadL Ec long-chain fatty acid transporter. The effect of fadL Sₘ on AHL sensing was more prominent for longer and more hydrophobic signal molecules. Using reporter gene fusions to QS target genes, we found that fadL Sₘ increased AHL sensitivity and accelerated the course of QS. In contrast to FadL Ec, FadL Sₘ did not support uptake of oleic acid, but did contribute to growth on palmitoleic acid. FadL Sₘ homologs from related symbiotic α-rhizobia and the plant pathogen Agrobacterium tumefaciens differed in their ability to facilitate long-chain AHL sensing or to support growth on oleic acid. FadL Aₜ was found to be ineffective toward long-chain AHLs. We obtained evidence that the predicted extracellular loop 5 of FadL Sₘ and further α-rhizobial FadL proteins contains determinants of specificity to long-chain AHLs. Replacement of a part of loop 5 by the corresponding region from α-rhizobial FadL proteins transferred sensitivity for long-chain AHLs to FadL Aₜ.
doi_str_mv 10.1073/pnas.1404929111
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_jstor_primary_23803700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23803700</jstor_id><sourcerecordid>23803700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-e2254c93ab4f7e1ef2bd6cd80574a4bcc24c97b5042a28a31a95d8ee5a1659003</originalsourceid><addsrcrecordid>eNpdkUFv1DAUhCMEokvhzAmI1AuXtO85dhJfKqGqBaSVkICerRfH2fUqGwfbi7T8epzusgVO7zDfjDyeLHuNcIlQl1fTSOESOXDJJCI-yRYIEouKS3iaLQBYXTSc8bPsRQgbAJCigefZGRNJ4nW5yPZf1_aXay0N-dpt3eBWIXd9Htcm7ynGfU7adnn0NIbJ-Wh8fkfdMmnaDjZSNPlkvDZTtG6cjYMbV4Vekx2Tcz8Uc2gw3o4mH0hHl26wq5GG8DJ71qdjXh3veXZ_d_v95lOx_PLx882HZaGFxFgYxgTXsqSW97VB07O2q3TXgKg58VZrltS6FcAZsYZKJCm6xhhBWAkJUJ5n14fcadduTafNmNoMavJ2S36vHFn1rzLatVq5n4ojCoEiBbw_Bnj3Y2dCVFsbtBkGGo3bBYWiAmSiEjyhF_-hG7fzc9tEcSlFXT5QVwdKexeCN_3pMQhqnlXNs6rHWZPj7d8dTvyfHROQH4HZeYpDVEzOkcAS8uaAbEJ0_jGibKCsH_7p3UHvySlaeRvU_TcGWAEg54w15W_UVr3Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549957354</pqid></control><display><type>article</type><title>Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Krol, Elizaveta ; Becker, Anke</creator><creatorcontrib>Krol, Elizaveta ; Becker, Anke</creatorcontrib><description>Quorum sensing (QS) using N-acyl homoserine lactones (AHLs) as signal molecules is a common strategy used by diverse Gram-negative bacteria. A widespread mechanism of AHL sensing involves binding of these molecules by cytosolic LuxR-type transcriptional regulators, which requires uptake of external AHLs. The outer membrane is supposed to be an efficient barrier for diffusion of long-chain AHLs. Here we report evidence that in Sinorhizobium meliloti , sensing of AHLs with acyl chains composed of 14 or more carbons is facilitated by the outer membrane protein FadL Sₘ, a homolog of the Escherichia coli FadL Ec long-chain fatty acid transporter. The effect of fadL Sₘ on AHL sensing was more prominent for longer and more hydrophobic signal molecules. Using reporter gene fusions to QS target genes, we found that fadL Sₘ increased AHL sensitivity and accelerated the course of QS. In contrast to FadL Ec, FadL Sₘ did not support uptake of oleic acid, but did contribute to growth on palmitoleic acid. FadL Sₘ homologs from related symbiotic α-rhizobia and the plant pathogen Agrobacterium tumefaciens differed in their ability to facilitate long-chain AHL sensing or to support growth on oleic acid. FadL Aₜ was found to be ineffective toward long-chain AHLs. We obtained evidence that the predicted extracellular loop 5 of FadL Sₘ and further α-rhizobial FadL proteins contains determinants of specificity to long-chain AHLs. Replacement of a part of loop 5 by the corresponding region from α-rhizobial FadL proteins transferred sensitivity for long-chain AHLs to FadL Aₜ.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1404929111</identifier><identifier>PMID: 25002473</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acyl-Butyrolactones - metabolism ; Agrobacterium tumefaciens ; Amino Acid Sequence ; Amino acids ; Bacterial proteins ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Binding sites ; Biological Sciences ; Biosynthesis ; Escherichia coli ; Fatty acids ; Fatty Acids - metabolism ; Fatty Acids, Monounsaturated - pharmacology ; Gene Expression Regulation, Bacterial - drug effects ; Genes ; Gram-negative bacteria ; Lactones ; Molecular Sequence Data ; Molecules ; Nonesterified fatty acids ; Oleic Acid - pharmacology ; Phenotype ; Phenotypes ; Protein Structure, Tertiary ; Quorum sensing ; Quorum Sensing - drug effects ; Quorum Sensing - genetics ; Sequence Homology, Amino Acid ; Signal Transduction - drug effects ; Sinorhizobium meliloti ; Sinorhizobium meliloti - drug effects ; Sinorhizobium meliloti - genetics ; Sinorhizobium meliloti - growth &amp; development ; Sinorhizobium meliloti - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-07, Vol.111 (29), p.10702-10707</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 22, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-e2254c93ab4f7e1ef2bd6cd80574a4bcc24c97b5042a28a31a95d8ee5a1659003</citedby><cites>FETCH-LOGICAL-c591t-e2254c93ab4f7e1ef2bd6cd80574a4bcc24c97b5042a28a31a95d8ee5a1659003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/29.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23803700$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23803700$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25002473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krol, Elizaveta</creatorcontrib><creatorcontrib>Becker, Anke</creatorcontrib><title>Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Quorum sensing (QS) using N-acyl homoserine lactones (AHLs) as signal molecules is a common strategy used by diverse Gram-negative bacteria. A widespread mechanism of AHL sensing involves binding of these molecules by cytosolic LuxR-type transcriptional regulators, which requires uptake of external AHLs. The outer membrane is supposed to be an efficient barrier for diffusion of long-chain AHLs. Here we report evidence that in Sinorhizobium meliloti , sensing of AHLs with acyl chains composed of 14 or more carbons is facilitated by the outer membrane protein FadL Sₘ, a homolog of the Escherichia coli FadL Ec long-chain fatty acid transporter. The effect of fadL Sₘ on AHL sensing was more prominent for longer and more hydrophobic signal molecules. Using reporter gene fusions to QS target genes, we found that fadL Sₘ increased AHL sensitivity and accelerated the course of QS. In contrast to FadL Ec, FadL Sₘ did not support uptake of oleic acid, but did contribute to growth on palmitoleic acid. FadL Sₘ homologs from related symbiotic α-rhizobia and the plant pathogen Agrobacterium tumefaciens differed in their ability to facilitate long-chain AHL sensing or to support growth on oleic acid. FadL Aₜ was found to be ineffective toward long-chain AHLs. We obtained evidence that the predicted extracellular loop 5 of FadL Sₘ and further α-rhizobial FadL proteins contains determinants of specificity to long-chain AHLs. Replacement of a part of loop 5 by the corresponding region from α-rhizobial FadL proteins transferred sensitivity for long-chain AHLs to FadL Aₜ.</description><subject>Acyl-Butyrolactones - metabolism</subject><subject>Agrobacterium tumefaciens</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Bacterial proteins</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Escherichia coli</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Fatty Acids, Monounsaturated - pharmacology</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>Genes</subject><subject>Gram-negative bacteria</subject><subject>Lactones</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Nonesterified fatty acids</subject><subject>Oleic Acid - pharmacology</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Protein Structure, Tertiary</subject><subject>Quorum sensing</subject><subject>Quorum Sensing - drug effects</subject><subject>Quorum Sensing - genetics</subject><subject>Sequence Homology, Amino Acid</subject><subject>Signal Transduction - drug effects</subject><subject>Sinorhizobium meliloti</subject><subject>Sinorhizobium meliloti - drug effects</subject><subject>Sinorhizobium meliloti - genetics</subject><subject>Sinorhizobium meliloti - growth &amp; development</subject><subject>Sinorhizobium meliloti - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkUFv1DAUhCMEokvhzAmI1AuXtO85dhJfKqGqBaSVkICerRfH2fUqGwfbi7T8epzusgVO7zDfjDyeLHuNcIlQl1fTSOESOXDJJCI-yRYIEouKS3iaLQBYXTSc8bPsRQgbAJCigefZGRNJ4nW5yPZf1_aXay0N-dpt3eBWIXd9Htcm7ynGfU7adnn0NIbJ-Wh8fkfdMmnaDjZSNPlkvDZTtG6cjYMbV4Vekx2Tcz8Uc2gw3o4mH0hHl26wq5GG8DJ71qdjXh3veXZ_d_v95lOx_PLx882HZaGFxFgYxgTXsqSW97VB07O2q3TXgKg58VZrltS6FcAZsYZKJCm6xhhBWAkJUJ5n14fcadduTafNmNoMavJ2S36vHFn1rzLatVq5n4ojCoEiBbw_Bnj3Y2dCVFsbtBkGGo3bBYWiAmSiEjyhF_-hG7fzc9tEcSlFXT5QVwdKexeCN_3pMQhqnlXNs6rHWZPj7d8dTvyfHROQH4HZeYpDVEzOkcAS8uaAbEJ0_jGibKCsH_7p3UHvySlaeRvU_TcGWAEg54w15W_UVr3Y</recordid><startdate>20140722</startdate><enddate>20140722</enddate><creator>Krol, Elizaveta</creator><creator>Becker, Anke</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20140722</creationdate><title>Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals</title><author>Krol, Elizaveta ; Becker, Anke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-e2254c93ab4f7e1ef2bd6cd80574a4bcc24c97b5042a28a31a95d8ee5a1659003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acyl-Butyrolactones - metabolism</topic><topic>Agrobacterium tumefaciens</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Bacterial proteins</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Escherichia coli</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Fatty Acids, Monounsaturated - pharmacology</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>Genes</topic><topic>Gram-negative bacteria</topic><topic>Lactones</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Nonesterified fatty acids</topic><topic>Oleic Acid - pharmacology</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Protein Structure, Tertiary</topic><topic>Quorum sensing</topic><topic>Quorum Sensing - drug effects</topic><topic>Quorum Sensing - genetics</topic><topic>Sequence Homology, Amino Acid</topic><topic>Signal Transduction - drug effects</topic><topic>Sinorhizobium meliloti</topic><topic>Sinorhizobium meliloti - drug effects</topic><topic>Sinorhizobium meliloti - genetics</topic><topic>Sinorhizobium meliloti - growth &amp; development</topic><topic>Sinorhizobium meliloti - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krol, Elizaveta</creatorcontrib><creatorcontrib>Becker, Anke</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krol, Elizaveta</au><au>Becker, Anke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-07-22</date><risdate>2014</risdate><volume>111</volume><issue>29</issue><spage>10702</spage><epage>10707</epage><pages>10702-10707</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Quorum sensing (QS) using N-acyl homoserine lactones (AHLs) as signal molecules is a common strategy used by diverse Gram-negative bacteria. A widespread mechanism of AHL sensing involves binding of these molecules by cytosolic LuxR-type transcriptional regulators, which requires uptake of external AHLs. The outer membrane is supposed to be an efficient barrier for diffusion of long-chain AHLs. Here we report evidence that in Sinorhizobium meliloti , sensing of AHLs with acyl chains composed of 14 or more carbons is facilitated by the outer membrane protein FadL Sₘ, a homolog of the Escherichia coli FadL Ec long-chain fatty acid transporter. The effect of fadL Sₘ on AHL sensing was more prominent for longer and more hydrophobic signal molecules. Using reporter gene fusions to QS target genes, we found that fadL Sₘ increased AHL sensitivity and accelerated the course of QS. In contrast to FadL Ec, FadL Sₘ did not support uptake of oleic acid, but did contribute to growth on palmitoleic acid. FadL Sₘ homologs from related symbiotic α-rhizobia and the plant pathogen Agrobacterium tumefaciens differed in their ability to facilitate long-chain AHL sensing or to support growth on oleic acid. FadL Aₜ was found to be ineffective toward long-chain AHLs. We obtained evidence that the predicted extracellular loop 5 of FadL Sₘ and further α-rhizobial FadL proteins contains determinants of specificity to long-chain AHLs. Replacement of a part of loop 5 by the corresponding region from α-rhizobial FadL proteins transferred sensitivity for long-chain AHLs to FadL Aₜ.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25002473</pmid><doi>10.1073/pnas.1404929111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-07, Vol.111 (29), p.10702-10707
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_23803700
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Acyl-Butyrolactones - metabolism
Agrobacterium tumefaciens
Amino Acid Sequence
Amino acids
Bacterial proteins
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Binding sites
Biological Sciences
Biosynthesis
Escherichia coli
Fatty acids
Fatty Acids - metabolism
Fatty Acids, Monounsaturated - pharmacology
Gene Expression Regulation, Bacterial - drug effects
Genes
Gram-negative bacteria
Lactones
Molecular Sequence Data
Molecules
Nonesterified fatty acids
Oleic Acid - pharmacology
Phenotype
Phenotypes
Protein Structure, Tertiary
Quorum sensing
Quorum Sensing - drug effects
Quorum Sensing - genetics
Sequence Homology, Amino Acid
Signal Transduction - drug effects
Sinorhizobium meliloti
Sinorhizobium meliloti - drug effects
Sinorhizobium meliloti - genetics
Sinorhizobium meliloti - growth & development
Sinorhizobium meliloti - metabolism
title Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhizobial%20homologs%20of%20the%20fatty%20acid%20transporter%20FadL%20facilitate%20perception%20of%20long-chain%20acyl-homoserine%20lactone%20signals&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Krol,%20Elizaveta&rft.date=2014-07-22&rft.volume=111&rft.issue=29&rft.spage=10702&rft.epage=10707&rft.pages=10702-10707&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1404929111&rft_dat=%3Cjstor_proqu%3E23803700%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-e2254c93ab4f7e1ef2bd6cd80574a4bcc24c97b5042a28a31a95d8ee5a1659003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1549957354&rft_id=info:pmid/25002473&rft_jstor_id=23803700&rfr_iscdi=true