Loading…
Chiral skyrmions in the plane
Magnets without inversion symmetry are a prime example of a solid-state system featuring topological solitons on the nanoscale, and a promising candidate for novel spintronic applications. Magnetic chiral skyrmions are localized vortex-like structures, which are stabilized by antisymmetric exchange...
Saved in:
Published in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2014-12, Vol.470 (2172), p.1-17 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magnets without inversion symmetry are a prime example of a solid-state system featuring topological solitons on the nanoscale, and a promising candidate for novel spintronic applications. Magnetic chiral skyrmions are localized vortex-like structures, which are stabilized by antisymmetric exchange interaction, the so-called Dzyaloshinskii-Moriya interaction. In continuum theories, the corresponding energy contribution is, in contrast to the classical Skyrme mechanism from nuclear physics, of linear gradient dependence and breaks the chiral symmetry. In the simplest possible case of a ferromagnetic energy in the plane, including symmetric and antisymmetric exchange and Zeeman interaction, we show that the least energy in a class of fields with unit topological charge is attained provided the Zeeman field is sufficiently large. |
---|---|
ISSN: | 1364-5021 |