Loading…
J-CLASS OPERATORS AND HYPERCYCLICITY
The purpose of the present work is to treat a new notion related to linear dynamics, which can be viewed as a "localization" of the notion of hypercyclicity. In particular, let T be a bounded linear operator acting on a Banach space X and let x be a non-zero vector in X such that for every...
Saved in:
Published in: | Journal of operator theory 2012-12, Vol.67 (1), p.101-119 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of the present work is to treat a new notion related to linear dynamics, which can be viewed as a "localization" of the notion of hypercyclicity. In particular, let T be a bounded linear operator acting on a Banach space X and let x be a non-zero vector in X such that for every open neighborhood U ⊂ X of x and every non-empty open set V ⊂ X there exists a positive integer n such that TnU ∩ V ≠ ∅. In this case T will be called a J-class operator. We investigate the class of operators satisfying the above property and provide various examples. It is worthwhile to mention that many results from the theory of hypercyclic operators have their analogues in this setting. For example we establish results related to the Bourdon–Feldman theorem and we characterize the J-class weighted shifts. We would also like to stress that even some non-separable Banach spaces which do not support topologically transitive operators, as for example l∞(N), do admit J-class operators. |
---|---|
ISSN: | 0379-4024 1841-7744 |