Loading…
On Some Classical Results in Probability Theory
Let$\{X_{i}\}$be a sequence of independent nondegenerate random variables. Let$S_{n}=\underset i=1\to{\overset n\to{\Sigma}}X_{i}$. In the following note we obtain an upper bound and a lower bound for$P\{\underset 1\leq i\leq n\to{{\rm max}}|S_{i}|>t\},t>0$. We then use these bounds to give si...
Saved in:
Published in: | Sankhya. Series A 1985-06, Vol.47 (2), p.215-221 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let$\{X_{i}\}$be a sequence of independent nondegenerate random variables. Let$S_{n}=\underset i=1\to{\overset n\to{\Sigma}}X_{i}$. In the following note we obtain an upper bound and a lower bound for$P\{\underset 1\leq i\leq n\to{{\rm max}}|S_{i}|>t\},t>0$. We then use these bounds to give simple proofs of some of the classical results including Kolmogorov-Feller theorem on the weak law of large numbers. |
---|---|
ISSN: | 0581-572X |