Loading…

On Some Classical Results in Probability Theory

Let$\{X_{i}\}$be a sequence of independent nondegenerate random variables. Let$S_{n}=\underset i=1\to{\overset n\to{\Sigma}}X_{i}$. In the following note we obtain an upper bound and a lower bound for$P\{\underset 1\leq i\leq n\to{{\rm max}}|S_{i}|>t\},t>0$. We then use these bounds to give si...

Full description

Saved in:
Bibliographic Details
Published in:Sankhya. Series A 1985-06, Vol.47 (2), p.215-221
Main Author: Etemadi, N.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let$\{X_{i}\}$be a sequence of independent nondegenerate random variables. Let$S_{n}=\underset i=1\to{\overset n\to{\Sigma}}X_{i}$. In the following note we obtain an upper bound and a lower bound for$P\{\underset 1\leq i\leq n\to{{\rm max}}|S_{i}|>t\},t>0$. We then use these bounds to give simple proofs of some of the classical results including Kolmogorov-Feller theorem on the weak law of large numbers.
ISSN:0581-572X