Loading…

On Some Classical Results in Probability Theory

Let$\{X_{i}\}$be a sequence of independent nondegenerate random variables. Let$S_{n}=\underset i=1\to{\overset n\to{\Sigma}}X_{i}$. In the following note we obtain an upper bound and a lower bound for$P\{\underset 1\leq i\leq n\to{{\rm max}}|S_{i}|>t\},t>0$. We then use these bounds to give si...

Full description

Saved in:
Bibliographic Details
Published in:Sankhya. Series A 1985-06, Vol.47 (2), p.215-221
Main Author: Etemadi, N.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 221
container_issue 2
container_start_page 215
container_title Sankhya. Series A
container_volume 47
creator Etemadi, N.
description Let$\{X_{i}\}$be a sequence of independent nondegenerate random variables. Let$S_{n}=\underset i=1\to{\overset n\to{\Sigma}}X_{i}$. In the following note we obtain an upper bound and a lower bound for$P\{\underset 1\leq i\leq n\to{{\rm max}}|S_{i}|>t\},t>0$. We then use these bounds to give simple proofs of some of the classical results including Kolmogorov-Feller theorem on the weak law of large numbers.
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_25050536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25050536</jstor_id><sourcerecordid>25050536</sourcerecordid><originalsourceid>FETCH-jstor_primary_250505363</originalsourceid><addsrcrecordid>eNpjYeA0MLUw1DU1N4rgYOAqLs4yMDA1N7Qw4WTQ989TCM7PTVVwzkksLs5MTsxRCEotLs0pKVbIzFMIKMpPSkzKzMksqVQIyUjNL6rkYWBNS8wpTuWF0twMsm6uIc4eulnFJflF8QVFmbmJRZXxRqYGQGhsZkxIHgBXcS2g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Some Classical Results in Probability Theory</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Etemadi, N.</creator><creatorcontrib>Etemadi, N.</creatorcontrib><description>Let$\{X_{i}\}$be a sequence of independent nondegenerate random variables. Let$S_{n}=\underset i=1\to{\overset n\to{\Sigma}}X_{i}$. In the following note we obtain an upper bound and a lower bound for$P\{\underset 1\leq i\leq n\to{{\rm max}}|S_{i}|&gt;t\},t&gt;0$. We then use these bounds to give simple proofs of some of the classical results including Kolmogorov-Feller theorem on the weak law of large numbers.</description><identifier>ISSN: 0581-572X</identifier><language>eng</language><publisher>Statistical Publishing Society</publisher><subject>Law of large numbers ; Probability theory ; Random variables</subject><ispartof>Sankhya. Series A, 1985-06, Vol.47 (2), p.215-221</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25050536$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25050536$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58238,58471</link.rule.ids></links><search><creatorcontrib>Etemadi, N.</creatorcontrib><title>On Some Classical Results in Probability Theory</title><title>Sankhya. Series A</title><description>Let$\{X_{i}\}$be a sequence of independent nondegenerate random variables. Let$S_{n}=\underset i=1\to{\overset n\to{\Sigma}}X_{i}$. In the following note we obtain an upper bound and a lower bound for$P\{\underset 1\leq i\leq n\to{{\rm max}}|S_{i}|&gt;t\},t&gt;0$. We then use these bounds to give simple proofs of some of the classical results including Kolmogorov-Feller theorem on the weak law of large numbers.</description><subject>Law of large numbers</subject><subject>Probability theory</subject><subject>Random variables</subject><issn>0581-572X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0MLUw1DU1N4rgYOAqLs4yMDA1N7Qw4WTQ989TCM7PTVVwzkksLs5MTsxRCEotLs0pKVbIzFMIKMpPSkzKzMksqVQIyUjNL6rkYWBNS8wpTuWF0twMsm6uIc4eulnFJflF8QVFmbmJRZXxRqYGQGhsZkxIHgBXcS2g</recordid><startdate>19850601</startdate><enddate>19850601</enddate><creator>Etemadi, N.</creator><general>Statistical Publishing Society</general><scope/></search><sort><creationdate>19850601</creationdate><title>On Some Classical Results in Probability Theory</title><author>Etemadi, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_250505363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Law of large numbers</topic><topic>Probability theory</topic><topic>Random variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Etemadi, N.</creatorcontrib><jtitle>Sankhya. Series A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Etemadi, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Some Classical Results in Probability Theory</atitle><jtitle>Sankhya. Series A</jtitle><date>1985-06-01</date><risdate>1985</risdate><volume>47</volume><issue>2</issue><spage>215</spage><epage>221</epage><pages>215-221</pages><issn>0581-572X</issn><abstract>Let$\{X_{i}\}$be a sequence of independent nondegenerate random variables. Let$S_{n}=\underset i=1\to{\overset n\to{\Sigma}}X_{i}$. In the following note we obtain an upper bound and a lower bound for$P\{\underset 1\leq i\leq n\to{{\rm max}}|S_{i}|&gt;t\},t&gt;0$. We then use these bounds to give simple proofs of some of the classical results including Kolmogorov-Feller theorem on the weak law of large numbers.</abstract><pub>Statistical Publishing Society</pub></addata></record>
fulltext fulltext
identifier ISSN: 0581-572X
ispartof Sankhya. Series A, 1985-06, Vol.47 (2), p.215-221
issn 0581-572X
language eng
recordid cdi_jstor_primary_25050536
source JSTOR Archival Journals and Primary Sources Collection
subjects Law of large numbers
Probability theory
Random variables
title On Some Classical Results in Probability Theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Some%20Classical%20Results%20in%20Probability%20Theory&rft.jtitle=Sankhya.%20Series%20A&rft.au=Etemadi,%20N.&rft.date=1985-06-01&rft.volume=47&rft.issue=2&rft.spage=215&rft.epage=221&rft.pages=215-221&rft.issn=0581-572X&rft_id=info:doi/&rft_dat=%3Cjstor%3E25050536%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_250505363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25050536&rfr_iscdi=true