Loading…
A REGULARITY THEOREM FOR A VOLTERRA INTEGRAL EQUATION OF THE THIRD KIND
An existence and smoothness theorem is given for a Volterra integral equation of the form $\mathrm{f}\left(\mathrm{x}\right)\mathrm{v}\left(\mathrm{x}\right)=\mathrm{\phi }\left(\mathrm{x}\right)-{\int }_{0}^{\mathrm{x}}\mathrm{K}(\mathrm{x},\mathrm{\xi })\mathrm{v}\left(\mathrm{\xi }\right)\mathrm{...
Saved in:
Published in: | The Journal of integral equations and applications 2008-12, Vol.20 (4), p.507-526 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An existence and smoothness theorem is given for a Volterra integral equation of the form $\mathrm{f}\left(\mathrm{x}\right)\mathrm{v}\left(\mathrm{x}\right)=\mathrm{\phi }\left(\mathrm{x}\right)-{\int }_{0}^{\mathrm{x}}\mathrm{K}(\mathrm{x},\mathrm{\xi })\mathrm{v}\left(\mathrm{\xi }\right)\mathrm{d}\mathrm{\xi }$ where f(x) has a zero at x = 0, and the kernel K(x, ξ) has a kind of square root behavior at the diagonal x = ξ. |
---|---|
ISSN: | 0897-3962 1938-2626 |
DOI: | 10.1216/JIE-2008-20-4-507 |