Loading…

In situ fluorometry reveals a persistent, perennial hypolimnetic cyanobacterial bloom in a seasonally anoxic reservoir

Cyanobacterial blooms are increasing in waterbodies worldwide because of anthropogenic forcing. Most blooms occur at the water’s surface, but some cyanobacterial taxa, such as Planktothrix, are able to modify their buoyancy to access more favorable growing conditions in deeper waters. Here, we used...

Full description

Saved in:
Bibliographic Details
Published in:Freshwater science 2018-09, Vol.37 (3), p.483-495
Main Authors: Hamre, Kathleen D., Lofton, Mary E., McClure, Ryan P., Munger, Zackary W., Doubek, Jonathan P., Gerling, Alexandra B., Schreiber, Madeline E., Carey, Cayelan C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cyanobacterial blooms are increasing in waterbodies worldwide because of anthropogenic forcing. Most blooms occur at the water’s surface, but some cyanobacterial taxa, such as Planktothrix, are able to modify their buoyancy to access more favorable growing conditions in deeper waters. Here, we used in situ fluorometry to examine the vertical distribution and biomass of Planktothrix in a seasonally anoxic reservoir for 3 consecutive summers. We also collected depth profiles of photosynthetically active radiation, temperature, and nutrients to evaluate which environmental drivers were most important for predicting Planktothrix biomass. In all 3 summers, Planktothrix dominated the phytoplankton community, exhibiting a large (concentrations ∼100 μg/L), persistent (lasting ∼100 d) bloom below the thermocline. The bloom consistently exhibited maximum biomass at or below the depth reached by 1% of surface light. Light availability probably was the most important factor driving the vertical distribution of the stratified Planktothrix bloom, and light, temperature, and nutrients together were strong predictors of cyanobacterial biomass in the hypolimnion, explaining 71 to 93% of the variation in biomass. Our data suggest that Planktothrix remained in the hypolimnion where nutrient availability was maximized, while progressing slightly upward in the water column through each summer in response to light limitation. Our findings demonstrate that Planktothrix can dominate in low light and anoxic conditions and can form persistent blooms that last for multiple months. As cyanobacterial blooms become more prevalent, monitoring cyanobacteria at the surface and at depth will become critically important in freshwater ecosystems.
ISSN:2161-9549
2161-9565
DOI:10.1086/699327