Loading…
On Stability of C0-Semigroups
We prove that if T(t) is a C0-semigroup on a Hilbert space E, then (a) 1 ∈ ρ(T(ω)) if and only if sup$\{||\int^t_0 \text{exp}\{(2\pi ik)/\omega\}T(s)x ds||: t \geq 0, k \in \mathbf{Z}\}< \infty$, for all x ∈ E, and (b) T(t) is exponentially stable if and only if sup$\{||\int^t_0\text{exp}\{i\lamb...
Saved in:
Published in: | Proceedings of the American Mathematical Society 2001-10, Vol.129 (10), p.2871-2879 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that if T(t) is a C0-semigroup on a Hilbert space E, then (a) 1 ∈ ρ(T(ω)) if and only if sup$\{||\int^t_0 \text{exp}\{(2\pi ik)/\omega\}T(s)x ds||: t \geq 0, k \in \mathbf{Z}\}< \infty$, for all x ∈ E, and (b) T(t) is exponentially stable if and only if sup$\{||\int^t_0\text{exp}\{i\lambda t\}T(s)x ds||: t \geq 0, \lambda \in \mathbf{R}\} < \infty$, for all x ∈ E. Analogous, but weaker, statements also hold for semigroups on Banach spaces. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/s0002-9939-01-05614-3 |