Loading…

On Stability of C0-Semigroups

We prove that if T(t) is a C0-semigroup on a Hilbert space E, then (a) 1 ∈ ρ(T(ω)) if and only if sup$\{||\int^t_0 \text{exp}\{(2\pi ik)/\omega\}T(s)x ds||: t \geq 0, k \in \mathbf{Z}\}< \infty$, for all x ∈ E, and (b) T(t) is exponentially stable if and only if sup$\{||\int^t_0\text{exp}\{i\lamb...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society 2001-10, Vol.129 (10), p.2871-2879
Main Author: Phong, Vu Quoc
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2879
container_issue 10
container_start_page 2871
container_title Proceedings of the American Mathematical Society
container_volume 129
creator Phong, Vu Quoc
description We prove that if T(t) is a C0-semigroup on a Hilbert space E, then (a) 1 ∈ ρ(T(ω)) if and only if sup$\{||\int^t_0 \text{exp}\{(2\pi ik)/\omega\}T(s)x ds||: t \geq 0, k \in \mathbf{Z}\}< \infty$, for all x ∈ E, and (b) T(t) is exponentially stable if and only if sup$\{||\int^t_0\text{exp}\{i\lambda t\}T(s)x ds||: t \geq 0, \lambda \in \mathbf{R}\} < \infty$, for all x ∈ E. Analogous, but weaker, statements also hold for semigroups on Banach spaces.
doi_str_mv 10.1090/s0002-9939-01-05614-3
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_2668818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2668818</jstor_id><sourcerecordid>2668818</sourcerecordid><originalsourceid>FETCH-LOGICAL-j91t-4c6df80548b0d658e45061447f35898c49369383aa86502de056cc7a6b9f6cc83</originalsourceid><addsrcrecordid>eNo9jt1qwkAQhYfSQlPrG1TIC2w7m92dzFyWYGtB8ELvZfOzkqCNZNML396A0qtzDnwcPoCFxneNgh8RETMlYkShVuhIW2UeINHIrIgzeoTkH3mGlxi7aWqxeQKLzW-6HX3ZHtvxkvYhLVBtm1N7GPq_c3yFp-CPsZnfcwa7r-WuWKn15vun-FyrTvSobEV1YHSWS6zJcWMdTg42D8axcGXFkBg23jM5zOpmUqyq3FMpYSpsZvB2u-3i2A_789Ce_HDZZ0TMms0VD7s7Lw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Stability of C0-Semigroups</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>American Mathematical Society Publications (Freely Accessible)</source><creator>Phong, Vu Quoc</creator><creatorcontrib>Phong, Vu Quoc</creatorcontrib><description>We prove that if T(t) is a C0-semigroup on a Hilbert space E, then (a) 1 ∈ ρ(T(ω)) if and only if sup$\{||\int^t_0 \text{exp}\{(2\pi ik)/\omega\}T(s)x ds||: t \geq 0, k \in \mathbf{Z}\}&lt; \infty$, for all x ∈ E, and (b) T(t) is exponentially stable if and only if sup$\{||\int^t_0\text{exp}\{i\lambda t\}T(s)x ds||: t \geq 0, \lambda \in \mathbf{R}\} &lt; \infty$, for all x ∈ E. Analogous, but weaker, statements also hold for semigroups on Banach spaces.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/s0002-9939-01-05614-3</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Banach space ; Differential equations ; Hilbert spaces ; Linear transformations ; Mathematical theorems ; Semigroups</subject><ispartof>Proceedings of the American Mathematical Society, 2001-10, Vol.129 (10), p.2871-2879</ispartof><rights>Copyright 2001 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2668818$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2668818$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,58216,58449</link.rule.ids></links><search><creatorcontrib>Phong, Vu Quoc</creatorcontrib><title>On Stability of C0-Semigroups</title><title>Proceedings of the American Mathematical Society</title><description>We prove that if T(t) is a C0-semigroup on a Hilbert space E, then (a) 1 ∈ ρ(T(ω)) if and only if sup$\{||\int^t_0 \text{exp}\{(2\pi ik)/\omega\}T(s)x ds||: t \geq 0, k \in \mathbf{Z}\}&lt; \infty$, for all x ∈ E, and (b) T(t) is exponentially stable if and only if sup$\{||\int^t_0\text{exp}\{i\lambda t\}T(s)x ds||: t \geq 0, \lambda \in \mathbf{R}\} &lt; \infty$, for all x ∈ E. Analogous, but weaker, statements also hold for semigroups on Banach spaces.</description><subject>Banach space</subject><subject>Differential equations</subject><subject>Hilbert spaces</subject><subject>Linear transformations</subject><subject>Mathematical theorems</subject><subject>Semigroups</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9jt1qwkAQhYfSQlPrG1TIC2w7m92dzFyWYGtB8ELvZfOzkqCNZNML396A0qtzDnwcPoCFxneNgh8RETMlYkShVuhIW2UeINHIrIgzeoTkH3mGlxi7aWqxeQKLzW-6HX3ZHtvxkvYhLVBtm1N7GPq_c3yFp-CPsZnfcwa7r-WuWKn15vun-FyrTvSobEV1YHSWS6zJcWMdTg42D8axcGXFkBg23jM5zOpmUqyq3FMpYSpsZvB2u-3i2A_789Ce_HDZZ0TMms0VD7s7Lw</recordid><startdate>20011001</startdate><enddate>20011001</enddate><creator>Phong, Vu Quoc</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>20011001</creationdate><title>On Stability of C0-Semigroups</title><author>Phong, Vu Quoc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j91t-4c6df80548b0d658e45061447f35898c49369383aa86502de056cc7a6b9f6cc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Banach space</topic><topic>Differential equations</topic><topic>Hilbert spaces</topic><topic>Linear transformations</topic><topic>Mathematical theorems</topic><topic>Semigroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phong, Vu Quoc</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phong, Vu Quoc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Stability of C0-Semigroups</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2001-10-01</date><risdate>2001</risdate><volume>129</volume><issue>10</issue><spage>2871</spage><epage>2879</epage><pages>2871-2879</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We prove that if T(t) is a C0-semigroup on a Hilbert space E, then (a) 1 ∈ ρ(T(ω)) if and only if sup$\{||\int^t_0 \text{exp}\{(2\pi ik)/\omega\}T(s)x ds||: t \geq 0, k \in \mathbf{Z}\}&lt; \infty$, for all x ∈ E, and (b) T(t) is exponentially stable if and only if sup$\{||\int^t_0\text{exp}\{i\lambda t\}T(s)x ds||: t \geq 0, \lambda \in \mathbf{R}\} &lt; \infty$, for all x ∈ E. Analogous, but weaker, statements also hold for semigroups on Banach spaces.</abstract><pub>American Mathematical Society</pub><doi>10.1090/s0002-9939-01-05614-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2001-10, Vol.129 (10), p.2871-2879
issn 0002-9939
1088-6826
language eng
recordid cdi_jstor_primary_2668818
source JSTOR Archival Journals and Primary Sources Collection; American Mathematical Society Publications (Freely Accessible)
subjects Banach space
Differential equations
Hilbert spaces
Linear transformations
Mathematical theorems
Semigroups
title On Stability of C0-Semigroups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Stability%20of%20C0-Semigroups&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Phong,%20Vu%20Quoc&rft.date=2001-10-01&rft.volume=129&rft.issue=10&rft.spage=2871&rft.epage=2879&rft.pages=2871-2879&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/s0002-9939-01-05614-3&rft_dat=%3Cjstor%3E2668818%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j91t-4c6df80548b0d658e45061447f35898c49369383aa86502de056cc7a6b9f6cc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2668818&rfr_iscdi=true