Loading…

Redundancy, Antiredundancy, and the Robustness of Genomes

Genetic mutations that lead to undetectable or minimal changes in phenotypes are said to reveal redundant functions. Redundancy is common among phenotypes of higher organisms that experience low mutation rates and small population sizes. Redundancy is less common among organisms with high mutation r...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2002-02, Vol.99 (3), p.1405-1409
Main Authors: Krakauer, David C., Plotkin, Joshua B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Genetic mutations that lead to undetectable or minimal changes in phenotypes are said to reveal redundant functions. Redundancy is common among phenotypes of higher organisms that experience low mutation rates and small population sizes. Redundancy is less common among organisms with high mutation rates and large populations, or among the rapidly dividing cells of multicellular organisms. In these cases, one even observes the opposite tendency: a hypersensitivity to mutation, which we refer to as antiredundancy. In this paper we analyze the evolutionary dynamics of redundancy and antiredundancy. Assuming a cost of redundancy, we find that large populations will evolve antiredundant mechanisms for removing mutants and thereby bolster the robustness of wild-type genomes; whereas small populations will evolve redundancy to ensure that all individuals have a high chance of survival. We propose that antiredundancy is as important for developmental robustness as redundancy, and is an essential mechanism for ensuring tissue-level stability in complex multicellular organisms. We suggest that antiredundancy deserves greater attention in relation to cancer, mitochondrial disease, and virus infection.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.032668599