Loading…
Regulation of Meiotic Chromatin Loop Size by Chromosomal Position
At meiotic prophase, chromatin loops around a proteinaceous core, with the sizes of these loops varying between species. Comparison of the morphology of sequence-related inserts at different sites in transgenic mice demonstrates that loop size also varies with chromosomal geography. Similarly, chrom...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1996-04, Vol.93 (7), p.2795-2800 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c513t-8116821a53dca946fe2356628f914832cbe45ee70a9c1f0240b1ff600e48cb0c3 |
---|---|
cites | |
container_end_page | 2800 |
container_issue | 7 |
container_start_page | 2795 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 93 |
creator | Henry H. Q. Heng Chamberlain, John W. Shi, Xiao-Mei Spyropoulos, Barbara Tsui, Lap-Chee Moens, Peter B. |
description | At meiotic prophase, chromatin loops around a proteinaceous core, with the sizes of these loops varying between species. Comparison of the morphology of sequence-related inserts at different sites in transgenic mice demonstrates that loop size also varies with chromosomal geography. Similarly, chromatin loop lengths differ dramatically for interstitially and terminally located hamster telomeric sequences. Sequences, telomeric or otherwise, located at chromosome termini, closely associate with the meiotic proteinaceous core, forming shorter loops than identical interstitial sequences. Thus, we present evidence that different chromatin packaging mechanisms exist for interstitial versus terminal chromosomal regions, which act separately from those operating at the level of the DNA sequence. Chromosomal position plays the dominant role in chromatin packaging. |
doi_str_mv | 10.1073/pnas.93.7.2795 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_39066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>39066</jstor_id><sourcerecordid>39066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-8116821a53dca946fe2356628f914832cbe45ee70a9c1f0240b1ff600e48cb0c3</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoNY6lq99UIQBi96N-M5SSYf4E1ZrBa2VPy4Dpk002aZnazJjFh_vTPsuqwieBU47_MckryEvECoECR7s-1trjSrZEWlrh-RBYLGUnANj8kCgMpSccqfkKc5rwFA1wpOyakSCEhhQS4--buxs0OIfRHb4tqHOARXLO9T3EzTvljFuC0-h5--aB5245inqCs-xhxm7Rk5aW2X_fP9eUa-Xr77svxQrm7eXy0vVqWrkQ2lQhSKoq3ZrbOai9ZTVgtBVauRK0Zd43ntvQSrHbZAOTTYtgLAc-UacOyMvN3t3Y7Nxt863w_JdmabwsamBxNtMH8mfbg3d_G7YVoinfTzvZ7it9HnwWxCdr7rbO_jmI2UWqqa4X9BlMAlFWoCX_8FruOY-ukPDAVkoBQXE1TtIJdizsm3hwsjmLlAMxdoNDPSzAVOwqvjZx7wfWNH15u93-nBN-3YdYP_MRwt-ic45S93-ToPMR0ApkEI9guy9rcP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201308846</pqid></control><display><type>article</type><title>Regulation of Meiotic Chromatin Loop Size by Chromosomal Position</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Henry H. Q. Heng ; Chamberlain, John W. ; Shi, Xiao-Mei ; Spyropoulos, Barbara ; Tsui, Lap-Chee ; Moens, Peter B.</creator><creatorcontrib>Henry H. Q. Heng ; Chamberlain, John W. ; Shi, Xiao-Mei ; Spyropoulos, Barbara ; Tsui, Lap-Chee ; Moens, Peter B.</creatorcontrib><description>At meiotic prophase, chromatin loops around a proteinaceous core, with the sizes of these loops varying between species. Comparison of the morphology of sequence-related inserts at different sites in transgenic mice demonstrates that loop size also varies with chromosomal geography. Similarly, chromatin loop lengths differ dramatically for interstitially and terminally located hamster telomeric sequences. Sequences, telomeric or otherwise, located at chromosome termini, closely associate with the meiotic proteinaceous core, forming shorter loops than identical interstitial sequences. Thus, we present evidence that different chromatin packaging mechanisms exist for interstitial versus terminal chromosomal regions, which act separately from those operating at the level of the DNA sequence. Chromosomal position plays the dominant role in chromatin packaging.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.93.7.2795</identifier><identifier>PMID: 8610120</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Animals ; Chromatin ; Chromatin - ultrastructure ; Chromosomes ; Chromosomes - physiology ; Chromosomes - ultrastructure ; Cricetinae ; DNA ; Fishing lines ; Fluorescence in situ hybridization ; Genetics ; HLA-B7 Antigen - biosynthesis ; HLA-B7 Antigen - genetics ; Humans ; In Situ Hybridization, Fluorescence ; Lymphocytes - cytology ; Lymphocytes - physiology ; Lymphocytes - ultrastructure ; Meiosis ; Mice ; Mice, Inbred C57BL ; Mice, Inbred DBA ; Mice, Transgenic ; Mitosis ; Packaging ; Rats ; Telomeres ; Transgenic animals</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-04, Vol.93 (7), p.2795-2800</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Apr 2, 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-8116821a53dca946fe2356628f914832cbe45ee70a9c1f0240b1ff600e48cb0c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/93/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/39066$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/39066$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8610120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Henry H. Q. Heng</creatorcontrib><creatorcontrib>Chamberlain, John W.</creatorcontrib><creatorcontrib>Shi, Xiao-Mei</creatorcontrib><creatorcontrib>Spyropoulos, Barbara</creatorcontrib><creatorcontrib>Tsui, Lap-Chee</creatorcontrib><creatorcontrib>Moens, Peter B.</creatorcontrib><title>Regulation of Meiotic Chromatin Loop Size by Chromosomal Position</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>At meiotic prophase, chromatin loops around a proteinaceous core, with the sizes of these loops varying between species. Comparison of the morphology of sequence-related inserts at different sites in transgenic mice demonstrates that loop size also varies with chromosomal geography. Similarly, chromatin loop lengths differ dramatically for interstitially and terminally located hamster telomeric sequences. Sequences, telomeric or otherwise, located at chromosome termini, closely associate with the meiotic proteinaceous core, forming shorter loops than identical interstitial sequences. Thus, we present evidence that different chromatin packaging mechanisms exist for interstitial versus terminal chromosomal regions, which act separately from those operating at the level of the DNA sequence. Chromosomal position plays the dominant role in chromatin packaging.</description><subject>Animals</subject><subject>Chromatin</subject><subject>Chromatin - ultrastructure</subject><subject>Chromosomes</subject><subject>Chromosomes - physiology</subject><subject>Chromosomes - ultrastructure</subject><subject>Cricetinae</subject><subject>DNA</subject><subject>Fishing lines</subject><subject>Fluorescence in situ hybridization</subject><subject>Genetics</subject><subject>HLA-B7 Antigen - biosynthesis</subject><subject>HLA-B7 Antigen - genetics</subject><subject>Humans</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Lymphocytes - cytology</subject><subject>Lymphocytes - physiology</subject><subject>Lymphocytes - ultrastructure</subject><subject>Meiosis</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred DBA</subject><subject>Mice, Transgenic</subject><subject>Mitosis</subject><subject>Packaging</subject><subject>Rats</subject><subject>Telomeres</subject><subject>Transgenic animals</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkV1rFDEUhoNY6lq99UIQBi96N-M5SSYf4E1ZrBa2VPy4Dpk002aZnazJjFh_vTPsuqwieBU47_MckryEvECoECR7s-1trjSrZEWlrh-RBYLGUnANj8kCgMpSccqfkKc5rwFA1wpOyakSCEhhQS4--buxs0OIfRHb4tqHOARXLO9T3EzTvljFuC0-h5--aB5245inqCs-xhxm7Rk5aW2X_fP9eUa-Xr77svxQrm7eXy0vVqWrkQ2lQhSKoq3ZrbOai9ZTVgtBVauRK0Zd43ntvQSrHbZAOTTYtgLAc-UacOyMvN3t3Y7Nxt863w_JdmabwsamBxNtMH8mfbg3d_G7YVoinfTzvZ7it9HnwWxCdr7rbO_jmI2UWqqa4X9BlMAlFWoCX_8FruOY-ukPDAVkoBQXE1TtIJdizsm3hwsjmLlAMxdoNDPSzAVOwqvjZx7wfWNH15u93-nBN-3YdYP_MRwt-ic45S93-ToPMR0ApkEI9guy9rcP</recordid><startdate>19960402</startdate><enddate>19960402</enddate><creator>Henry H. Q. Heng</creator><creator>Chamberlain, John W.</creator><creator>Shi, Xiao-Mei</creator><creator>Spyropoulos, Barbara</creator><creator>Tsui, Lap-Chee</creator><creator>Moens, Peter B.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19960402</creationdate><title>Regulation of Meiotic Chromatin Loop Size by Chromosomal Position</title><author>Henry H. Q. Heng ; Chamberlain, John W. ; Shi, Xiao-Mei ; Spyropoulos, Barbara ; Tsui, Lap-Chee ; Moens, Peter B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-8116821a53dca946fe2356628f914832cbe45ee70a9c1f0240b1ff600e48cb0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animals</topic><topic>Chromatin</topic><topic>Chromatin - ultrastructure</topic><topic>Chromosomes</topic><topic>Chromosomes - physiology</topic><topic>Chromosomes - ultrastructure</topic><topic>Cricetinae</topic><topic>DNA</topic><topic>Fishing lines</topic><topic>Fluorescence in situ hybridization</topic><topic>Genetics</topic><topic>HLA-B7 Antigen - biosynthesis</topic><topic>HLA-B7 Antigen - genetics</topic><topic>Humans</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Lymphocytes - cytology</topic><topic>Lymphocytes - physiology</topic><topic>Lymphocytes - ultrastructure</topic><topic>Meiosis</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred DBA</topic><topic>Mice, Transgenic</topic><topic>Mitosis</topic><topic>Packaging</topic><topic>Rats</topic><topic>Telomeres</topic><topic>Transgenic animals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henry H. Q. Heng</creatorcontrib><creatorcontrib>Chamberlain, John W.</creatorcontrib><creatorcontrib>Shi, Xiao-Mei</creatorcontrib><creatorcontrib>Spyropoulos, Barbara</creatorcontrib><creatorcontrib>Tsui, Lap-Chee</creatorcontrib><creatorcontrib>Moens, Peter B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henry H. Q. Heng</au><au>Chamberlain, John W.</au><au>Shi, Xiao-Mei</au><au>Spyropoulos, Barbara</au><au>Tsui, Lap-Chee</au><au>Moens, Peter B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of Meiotic Chromatin Loop Size by Chromosomal Position</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1996-04-02</date><risdate>1996</risdate><volume>93</volume><issue>7</issue><spage>2795</spage><epage>2800</epage><pages>2795-2800</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>At meiotic prophase, chromatin loops around a proteinaceous core, with the sizes of these loops varying between species. Comparison of the morphology of sequence-related inserts at different sites in transgenic mice demonstrates that loop size also varies with chromosomal geography. Similarly, chromatin loop lengths differ dramatically for interstitially and terminally located hamster telomeric sequences. Sequences, telomeric or otherwise, located at chromosome termini, closely associate with the meiotic proteinaceous core, forming shorter loops than identical interstitial sequences. Thus, we present evidence that different chromatin packaging mechanisms exist for interstitial versus terminal chromosomal regions, which act separately from those operating at the level of the DNA sequence. Chromosomal position plays the dominant role in chromatin packaging.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8610120</pmid><doi>10.1073/pnas.93.7.2795</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1996-04, Vol.93 (7), p.2795-2800 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_jstor_primary_39066 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Animals Chromatin Chromatin - ultrastructure Chromosomes Chromosomes - physiology Chromosomes - ultrastructure Cricetinae DNA Fishing lines Fluorescence in situ hybridization Genetics HLA-B7 Antigen - biosynthesis HLA-B7 Antigen - genetics Humans In Situ Hybridization, Fluorescence Lymphocytes - cytology Lymphocytes - physiology Lymphocytes - ultrastructure Meiosis Mice Mice, Inbred C57BL Mice, Inbred DBA Mice, Transgenic Mitosis Packaging Rats Telomeres Transgenic animals |
title | Regulation of Meiotic Chromatin Loop Size by Chromosomal Position |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20Meiotic%20Chromatin%20Loop%20Size%20by%20Chromosomal%20Position&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Henry%20H.%20Q.%20Heng&rft.date=1996-04-02&rft.volume=93&rft.issue=7&rft.spage=2795&rft.epage=2800&rft.pages=2795-2800&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.93.7.2795&rft_dat=%3Cjstor_cross%3E39066%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-8116821a53dca946fe2356628f914832cbe45ee70a9c1f0240b1ff600e48cb0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201308846&rft_id=info:pmid/8610120&rft_jstor_id=39066&rfr_iscdi=true |