Loading…

Regulation of Meiotic Chromatin Loop Size by Chromosomal Position

At meiotic prophase, chromatin loops around a proteinaceous core, with the sizes of these loops varying between species. Comparison of the morphology of sequence-related inserts at different sites in transgenic mice demonstrates that loop size also varies with chromosomal geography. Similarly, chrom...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1996-04, Vol.93 (7), p.2795-2800
Main Authors: Henry H. Q. Heng, Chamberlain, John W., Shi, Xiao-Mei, Spyropoulos, Barbara, Tsui, Lap-Chee, Moens, Peter B.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-8116821a53dca946fe2356628f914832cbe45ee70a9c1f0240b1ff600e48cb0c3
cites
container_end_page 2800
container_issue 7
container_start_page 2795
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 93
creator Henry H. Q. Heng
Chamberlain, John W.
Shi, Xiao-Mei
Spyropoulos, Barbara
Tsui, Lap-Chee
Moens, Peter B.
description At meiotic prophase, chromatin loops around a proteinaceous core, with the sizes of these loops varying between species. Comparison of the morphology of sequence-related inserts at different sites in transgenic mice demonstrates that loop size also varies with chromosomal geography. Similarly, chromatin loop lengths differ dramatically for interstitially and terminally located hamster telomeric sequences. Sequences, telomeric or otherwise, located at chromosome termini, closely associate with the meiotic proteinaceous core, forming shorter loops than identical interstitial sequences. Thus, we present evidence that different chromatin packaging mechanisms exist for interstitial versus terminal chromosomal regions, which act separately from those operating at the level of the DNA sequence. Chromosomal position plays the dominant role in chromatin packaging.
doi_str_mv 10.1073/pnas.93.7.2795
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_39066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>39066</jstor_id><sourcerecordid>39066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-8116821a53dca946fe2356628f914832cbe45ee70a9c1f0240b1ff600e48cb0c3</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoNY6lq99UIQBi96N-M5SSYf4E1ZrBa2VPy4Dpk002aZnazJjFh_vTPsuqwieBU47_MckryEvECoECR7s-1trjSrZEWlrh-RBYLGUnANj8kCgMpSccqfkKc5rwFA1wpOyakSCEhhQS4--buxs0OIfRHb4tqHOARXLO9T3EzTvljFuC0-h5--aB5245inqCs-xhxm7Rk5aW2X_fP9eUa-Xr77svxQrm7eXy0vVqWrkQ2lQhSKoq3ZrbOai9ZTVgtBVauRK0Zd43ntvQSrHbZAOTTYtgLAc-UacOyMvN3t3Y7Nxt863w_JdmabwsamBxNtMH8mfbg3d_G7YVoinfTzvZ7it9HnwWxCdr7rbO_jmI2UWqqa4X9BlMAlFWoCX_8FruOY-ukPDAVkoBQXE1TtIJdizsm3hwsjmLlAMxdoNDPSzAVOwqvjZx7wfWNH15u93-nBN-3YdYP_MRwt-ic45S93-ToPMR0ApkEI9guy9rcP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201308846</pqid></control><display><type>article</type><title>Regulation of Meiotic Chromatin Loop Size by Chromosomal Position</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Henry H. Q. Heng ; Chamberlain, John W. ; Shi, Xiao-Mei ; Spyropoulos, Barbara ; Tsui, Lap-Chee ; Moens, Peter B.</creator><creatorcontrib>Henry H. Q. Heng ; Chamberlain, John W. ; Shi, Xiao-Mei ; Spyropoulos, Barbara ; Tsui, Lap-Chee ; Moens, Peter B.</creatorcontrib><description>At meiotic prophase, chromatin loops around a proteinaceous core, with the sizes of these loops varying between species. Comparison of the morphology of sequence-related inserts at different sites in transgenic mice demonstrates that loop size also varies with chromosomal geography. Similarly, chromatin loop lengths differ dramatically for interstitially and terminally located hamster telomeric sequences. Sequences, telomeric or otherwise, located at chromosome termini, closely associate with the meiotic proteinaceous core, forming shorter loops than identical interstitial sequences. Thus, we present evidence that different chromatin packaging mechanisms exist for interstitial versus terminal chromosomal regions, which act separately from those operating at the level of the DNA sequence. Chromosomal position plays the dominant role in chromatin packaging.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.93.7.2795</identifier><identifier>PMID: 8610120</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Animals ; Chromatin ; Chromatin - ultrastructure ; Chromosomes ; Chromosomes - physiology ; Chromosomes - ultrastructure ; Cricetinae ; DNA ; Fishing lines ; Fluorescence in situ hybridization ; Genetics ; HLA-B7 Antigen - biosynthesis ; HLA-B7 Antigen - genetics ; Humans ; In Situ Hybridization, Fluorescence ; Lymphocytes - cytology ; Lymphocytes - physiology ; Lymphocytes - ultrastructure ; Meiosis ; Mice ; Mice, Inbred C57BL ; Mice, Inbred DBA ; Mice, Transgenic ; Mitosis ; Packaging ; Rats ; Telomeres ; Transgenic animals</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-04, Vol.93 (7), p.2795-2800</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Apr 2, 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-8116821a53dca946fe2356628f914832cbe45ee70a9c1f0240b1ff600e48cb0c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/93/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/39066$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/39066$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8610120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Henry H. Q. Heng</creatorcontrib><creatorcontrib>Chamberlain, John W.</creatorcontrib><creatorcontrib>Shi, Xiao-Mei</creatorcontrib><creatorcontrib>Spyropoulos, Barbara</creatorcontrib><creatorcontrib>Tsui, Lap-Chee</creatorcontrib><creatorcontrib>Moens, Peter B.</creatorcontrib><title>Regulation of Meiotic Chromatin Loop Size by Chromosomal Position</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>At meiotic prophase, chromatin loops around a proteinaceous core, with the sizes of these loops varying between species. Comparison of the morphology of sequence-related inserts at different sites in transgenic mice demonstrates that loop size also varies with chromosomal geography. Similarly, chromatin loop lengths differ dramatically for interstitially and terminally located hamster telomeric sequences. Sequences, telomeric or otherwise, located at chromosome termini, closely associate with the meiotic proteinaceous core, forming shorter loops than identical interstitial sequences. Thus, we present evidence that different chromatin packaging mechanisms exist for interstitial versus terminal chromosomal regions, which act separately from those operating at the level of the DNA sequence. Chromosomal position plays the dominant role in chromatin packaging.</description><subject>Animals</subject><subject>Chromatin</subject><subject>Chromatin - ultrastructure</subject><subject>Chromosomes</subject><subject>Chromosomes - physiology</subject><subject>Chromosomes - ultrastructure</subject><subject>Cricetinae</subject><subject>DNA</subject><subject>Fishing lines</subject><subject>Fluorescence in situ hybridization</subject><subject>Genetics</subject><subject>HLA-B7 Antigen - biosynthesis</subject><subject>HLA-B7 Antigen - genetics</subject><subject>Humans</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Lymphocytes - cytology</subject><subject>Lymphocytes - physiology</subject><subject>Lymphocytes - ultrastructure</subject><subject>Meiosis</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred DBA</subject><subject>Mice, Transgenic</subject><subject>Mitosis</subject><subject>Packaging</subject><subject>Rats</subject><subject>Telomeres</subject><subject>Transgenic animals</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkV1rFDEUhoNY6lq99UIQBi96N-M5SSYf4E1ZrBa2VPy4Dpk002aZnazJjFh_vTPsuqwieBU47_MckryEvECoECR7s-1trjSrZEWlrh-RBYLGUnANj8kCgMpSccqfkKc5rwFA1wpOyakSCEhhQS4--buxs0OIfRHb4tqHOARXLO9T3EzTvljFuC0-h5--aB5245inqCs-xhxm7Rk5aW2X_fP9eUa-Xr77svxQrm7eXy0vVqWrkQ2lQhSKoq3ZrbOai9ZTVgtBVauRK0Zd43ntvQSrHbZAOTTYtgLAc-UacOyMvN3t3Y7Nxt863w_JdmabwsamBxNtMH8mfbg3d_G7YVoinfTzvZ7it9HnwWxCdr7rbO_jmI2UWqqa4X9BlMAlFWoCX_8FruOY-ukPDAVkoBQXE1TtIJdizsm3hwsjmLlAMxdoNDPSzAVOwqvjZx7wfWNH15u93-nBN-3YdYP_MRwt-ic45S93-ToPMR0ApkEI9guy9rcP</recordid><startdate>19960402</startdate><enddate>19960402</enddate><creator>Henry H. Q. Heng</creator><creator>Chamberlain, John W.</creator><creator>Shi, Xiao-Mei</creator><creator>Spyropoulos, Barbara</creator><creator>Tsui, Lap-Chee</creator><creator>Moens, Peter B.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19960402</creationdate><title>Regulation of Meiotic Chromatin Loop Size by Chromosomal Position</title><author>Henry H. Q. Heng ; Chamberlain, John W. ; Shi, Xiao-Mei ; Spyropoulos, Barbara ; Tsui, Lap-Chee ; Moens, Peter B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-8116821a53dca946fe2356628f914832cbe45ee70a9c1f0240b1ff600e48cb0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animals</topic><topic>Chromatin</topic><topic>Chromatin - ultrastructure</topic><topic>Chromosomes</topic><topic>Chromosomes - physiology</topic><topic>Chromosomes - ultrastructure</topic><topic>Cricetinae</topic><topic>DNA</topic><topic>Fishing lines</topic><topic>Fluorescence in situ hybridization</topic><topic>Genetics</topic><topic>HLA-B7 Antigen - biosynthesis</topic><topic>HLA-B7 Antigen - genetics</topic><topic>Humans</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Lymphocytes - cytology</topic><topic>Lymphocytes - physiology</topic><topic>Lymphocytes - ultrastructure</topic><topic>Meiosis</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred DBA</topic><topic>Mice, Transgenic</topic><topic>Mitosis</topic><topic>Packaging</topic><topic>Rats</topic><topic>Telomeres</topic><topic>Transgenic animals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henry H. Q. Heng</creatorcontrib><creatorcontrib>Chamberlain, John W.</creatorcontrib><creatorcontrib>Shi, Xiao-Mei</creatorcontrib><creatorcontrib>Spyropoulos, Barbara</creatorcontrib><creatorcontrib>Tsui, Lap-Chee</creatorcontrib><creatorcontrib>Moens, Peter B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henry H. Q. Heng</au><au>Chamberlain, John W.</au><au>Shi, Xiao-Mei</au><au>Spyropoulos, Barbara</au><au>Tsui, Lap-Chee</au><au>Moens, Peter B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of Meiotic Chromatin Loop Size by Chromosomal Position</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1996-04-02</date><risdate>1996</risdate><volume>93</volume><issue>7</issue><spage>2795</spage><epage>2800</epage><pages>2795-2800</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>At meiotic prophase, chromatin loops around a proteinaceous core, with the sizes of these loops varying between species. Comparison of the morphology of sequence-related inserts at different sites in transgenic mice demonstrates that loop size also varies with chromosomal geography. Similarly, chromatin loop lengths differ dramatically for interstitially and terminally located hamster telomeric sequences. Sequences, telomeric or otherwise, located at chromosome termini, closely associate with the meiotic proteinaceous core, forming shorter loops than identical interstitial sequences. Thus, we present evidence that different chromatin packaging mechanisms exist for interstitial versus terminal chromosomal regions, which act separately from those operating at the level of the DNA sequence. Chromosomal position plays the dominant role in chromatin packaging.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8610120</pmid><doi>10.1073/pnas.93.7.2795</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1996-04, Vol.93 (7), p.2795-2800
issn 0027-8424
1091-6490
language eng
recordid cdi_jstor_primary_39066
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Animals
Chromatin
Chromatin - ultrastructure
Chromosomes
Chromosomes - physiology
Chromosomes - ultrastructure
Cricetinae
DNA
Fishing lines
Fluorescence in situ hybridization
Genetics
HLA-B7 Antigen - biosynthesis
HLA-B7 Antigen - genetics
Humans
In Situ Hybridization, Fluorescence
Lymphocytes - cytology
Lymphocytes - physiology
Lymphocytes - ultrastructure
Meiosis
Mice
Mice, Inbred C57BL
Mice, Inbred DBA
Mice, Transgenic
Mitosis
Packaging
Rats
Telomeres
Transgenic animals
title Regulation of Meiotic Chromatin Loop Size by Chromosomal Position
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20Meiotic%20Chromatin%20Loop%20Size%20by%20Chromosomal%20Position&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Henry%20H.%20Q.%20Heng&rft.date=1996-04-02&rft.volume=93&rft.issue=7&rft.spage=2795&rft.epage=2800&rft.pages=2795-2800&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.93.7.2795&rft_dat=%3Cjstor_cross%3E39066%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-8116821a53dca946fe2356628f914832cbe45ee70a9c1f0240b1ff600e48cb0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201308846&rft_id=info:pmid/8610120&rft_jstor_id=39066&rfr_iscdi=true