Loading…

Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa

Understanding adaptation by natural selection requires understanding the genetic factors that determine which beneficial mutations are available for selection. Here, using experimental evolution of rifampicin-resistant Pseudomonas aeruginosa, we show that different genotypes vary in their capacity f...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2010-02, Vol.277 (1681), p.643-650
Main Authors: Hall, Alex R., Griffiths, Victoria F., MacLean, R. Craig, Colegrave, Nick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c674t-edcf556e927cd256219176bd5ab8832636134ecef6964b8e6269aa1b076a5583
cites cdi_FETCH-LOGICAL-c674t-edcf556e927cd256219176bd5ab8832636134ecef6964b8e6269aa1b076a5583
container_end_page 650
container_issue 1681
container_start_page 643
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 277
creator Hall, Alex R.
Griffiths, Victoria F.
MacLean, R. Craig
Colegrave, Nick
description Understanding adaptation by natural selection requires understanding the genetic factors that determine which beneficial mutations are available for selection. Here, using experimental evolution of rifampicin-resistant Pseudomonas aeruginosa, we show that different genotypes vary in their capacity for adaptation to the cost of antibiotic resistance. We then use sequence data to show that the beneficial mutations associated with fitness recovery were specific to particular genetic backgrounds, suggesting that genotypes had access to different sets of beneficial mutations. When we manipulated the supply rate of beneficial mutations, by altering effective population size during evolution, we found that it constrained adaptation in some selection lines by restricting access to rare beneficial mutations, but that the effect varied among the genotypes in our experiment. These results suggest that mutational neighbourhood varies even among genotypes that differ by a single amino acid change, and this determines their capacity for adaptation as well as the influence of population biology processes that alter mutation supply rate.
doi_str_mv 10.1098/rspb.2009.1630
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_40506164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40506164</jstor_id><sourcerecordid>40506164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c674t-edcf556e927cd256219176bd5ab8832636134ecef6964b8e6269aa1b076a5583</originalsourceid><addsrcrecordid>eNp9Uk2P0zAQjRCILQtXbqDcOKXYjr9yQWIrvlaLWC0VBy6Dk7itu2kc7KQQfj3OJip0EXuyrHnz3pt5E0VPMZpjlMmXzjf5nCCUzTFP0b1ohqnACckYvR_NUMZJIikjJ9Ej77cowJhkD6MTnEmZCURn0bePXataY2tVxbU2601uO7extoxVXca7qRj7rmmqPnaq1XFha986ZepYlaqZAOF36XVX2l2g8rHSrlub2nr1OHqwUpXXT6b3NFq-fbNcvE8uPr37sHh9kRRc0DbRZbFijOuMiKIkjBOcYcHzkqlcypTwlOOU6kKveMZpLjUnPFMK50hwxZhMT6NXI23T5btAputgsYLGmZ1yPVhl4LhSmw2s7R6IpIEKB4IXE4Gz3zvtW9gZX-iqUrW2nQeRphIxylhAzkdk4az3Tq8OKhjBEAoMocAQCgyhhIbnf3v7A59SCIDrEeBsH3ZkC6PbHrYhiRCLh6vPl2d7IoTBXGJAMsVIEJEK-GWaSUsIMN53Gm4gx_r_2knvUvvvEM_Grq1vrTvMQBFDHPNhhmSsG9_qn4e6ctfAg1cGXySFxVd6TsT5EoYtXo34TTi6H8ZpOLJzox4urQ1xgVau6icvCEh2e8BVV4Woy1UgZXeS2r5xPr_Vvsfpby9HCdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733805455</pqid></control><display><type>article</type><title>Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa</title><source>PubMed Central</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><source>JSTOR Journals and Primary Sources</source><creator>Hall, Alex R. ; Griffiths, Victoria F. ; MacLean, R. Craig ; Colegrave, Nick</creator><creatorcontrib>Hall, Alex R. ; Griffiths, Victoria F. ; MacLean, R. Craig ; Colegrave, Nick</creatorcontrib><description>Understanding adaptation by natural selection requires understanding the genetic factors that determine which beneficial mutations are available for selection. Here, using experimental evolution of rifampicin-resistant Pseudomonas aeruginosa, we show that different genotypes vary in their capacity for adaptation to the cost of antibiotic resistance. We then use sequence data to show that the beneficial mutations associated with fitness recovery were specific to particular genetic backgrounds, suggesting that genotypes had access to different sets of beneficial mutations. When we manipulated the supply rate of beneficial mutations, by altering effective population size during evolution, we found that it constrained adaptation in some selection lines by restricting access to rare beneficial mutations, but that the effect varied among the genotypes in our experiment. These results suggest that mutational neighbourhood varies even among genotypes that differ by a single amino acid change, and this determines their capacity for adaptation as well as the influence of population biology processes that alter mutation supply rate.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>EISSN: 1471-2945</identifier><identifier>DOI: 10.1098/rspb.2009.1630</identifier><identifier>PMID: 19889704</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Adaptation, Biological - genetics ; Amino acids ; Bacteria ; Bacterial Proteins - genetics ; Base Sequence ; Biological adaptation ; Compensatory Adaptation ; Directed Molecular Evolution ; DNA Primers - genetics ; Drug Resistance, Microbial - genetics ; Ecological competition ; Evolution ; Evolutionary genetics ; Experimental Evolution ; Genetic mutation ; Genotype ; Genotypes ; Molecular Sequence Data ; Mutation - genetics ; Mutational Neighbourhood ; Population genetics ; Population size ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - physiology ; Rifampin ; Selection, Genetic ; Sequence Analysis, DNA</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2010-02, Vol.277 (1681), p.643-650</ispartof><rights>Copyright 2010 The Royal Society</rights><rights>2009 The Royal Society</rights><rights>2009 The Royal Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c674t-edcf556e927cd256219176bd5ab8832636134ecef6964b8e6269aa1b076a5583</citedby><cites>FETCH-LOGICAL-c674t-edcf556e927cd256219176bd5ab8832636134ecef6964b8e6269aa1b076a5583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40506164$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40506164$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19889704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, Alex R.</creatorcontrib><creatorcontrib>Griffiths, Victoria F.</creatorcontrib><creatorcontrib>MacLean, R. Craig</creatorcontrib><creatorcontrib>Colegrave, Nick</creatorcontrib><title>Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc. R. Soc. B</addtitle><description>Understanding adaptation by natural selection requires understanding the genetic factors that determine which beneficial mutations are available for selection. Here, using experimental evolution of rifampicin-resistant Pseudomonas aeruginosa, we show that different genotypes vary in their capacity for adaptation to the cost of antibiotic resistance. We then use sequence data to show that the beneficial mutations associated with fitness recovery were specific to particular genetic backgrounds, suggesting that genotypes had access to different sets of beneficial mutations. When we manipulated the supply rate of beneficial mutations, by altering effective population size during evolution, we found that it constrained adaptation in some selection lines by restricting access to rare beneficial mutations, but that the effect varied among the genotypes in our experiment. These results suggest that mutational neighbourhood varies even among genotypes that differ by a single amino acid change, and this determines their capacity for adaptation as well as the influence of population biology processes that alter mutation supply rate.</description><subject>Adaptation, Biological - genetics</subject><subject>Amino acids</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Base Sequence</subject><subject>Biological adaptation</subject><subject>Compensatory Adaptation</subject><subject>Directed Molecular Evolution</subject><subject>DNA Primers - genetics</subject><subject>Drug Resistance, Microbial - genetics</subject><subject>Ecological competition</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Experimental Evolution</subject><subject>Genetic mutation</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Mutational Neighbourhood</subject><subject>Population genetics</subject><subject>Population size</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>Rifampin</subject><subject>Selection, Genetic</subject><subject>Sequence Analysis, DNA</subject><issn>0962-8452</issn><issn>1471-2954</issn><issn>1471-2945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9Uk2P0zAQjRCILQtXbqDcOKXYjr9yQWIrvlaLWC0VBy6Dk7itu2kc7KQQfj3OJip0EXuyrHnz3pt5E0VPMZpjlMmXzjf5nCCUzTFP0b1ohqnACckYvR_NUMZJIikjJ9Ej77cowJhkD6MTnEmZCURn0bePXataY2tVxbU2601uO7extoxVXca7qRj7rmmqPnaq1XFha986ZepYlaqZAOF36XVX2l2g8rHSrlub2nr1OHqwUpXXT6b3NFq-fbNcvE8uPr37sHh9kRRc0DbRZbFijOuMiKIkjBOcYcHzkqlcypTwlOOU6kKveMZpLjUnPFMK50hwxZhMT6NXI23T5btAputgsYLGmZ1yPVhl4LhSmw2s7R6IpIEKB4IXE4Gz3zvtW9gZX-iqUrW2nQeRphIxylhAzkdk4az3Tq8OKhjBEAoMocAQCgyhhIbnf3v7A59SCIDrEeBsH3ZkC6PbHrYhiRCLh6vPl2d7IoTBXGJAMsVIEJEK-GWaSUsIMN53Gm4gx_r_2knvUvvvEM_Grq1vrTvMQBFDHPNhhmSsG9_qn4e6ctfAg1cGXySFxVd6TsT5EoYtXo34TTi6H8ZpOLJzox4urQ1xgVau6icvCEh2e8BVV4Woy1UgZXeS2r5xPr_Vvsfpby9HCdQ</recordid><startdate>20100222</startdate><enddate>20100222</enddate><creator>Hall, Alex R.</creator><creator>Griffiths, Victoria F.</creator><creator>MacLean, R. Craig</creator><creator>Colegrave, Nick</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100222</creationdate><title>Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa</title><author>Hall, Alex R. ; Griffiths, Victoria F. ; MacLean, R. Craig ; Colegrave, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c674t-edcf556e927cd256219176bd5ab8832636134ecef6964b8e6269aa1b076a5583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation, Biological - genetics</topic><topic>Amino acids</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Base Sequence</topic><topic>Biological adaptation</topic><topic>Compensatory Adaptation</topic><topic>Directed Molecular Evolution</topic><topic>DNA Primers - genetics</topic><topic>Drug Resistance, Microbial - genetics</topic><topic>Ecological competition</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Experimental Evolution</topic><topic>Genetic mutation</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Mutational Neighbourhood</topic><topic>Population genetics</topic><topic>Population size</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>Rifampin</topic><topic>Selection, Genetic</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Alex R.</creatorcontrib><creatorcontrib>Griffiths, Victoria F.</creatorcontrib><creatorcontrib>MacLean, R. Craig</creatorcontrib><creatorcontrib>Colegrave, Nick</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Alex R.</au><au>Griffiths, Victoria F.</au><au>MacLean, R. Craig</au><au>Colegrave, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc. R. Soc. B</addtitle><date>2010-02-22</date><risdate>2010</risdate><volume>277</volume><issue>1681</issue><spage>643</spage><epage>650</epage><pages>643-650</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><eissn>1471-2945</eissn><abstract>Understanding adaptation by natural selection requires understanding the genetic factors that determine which beneficial mutations are available for selection. Here, using experimental evolution of rifampicin-resistant Pseudomonas aeruginosa, we show that different genotypes vary in their capacity for adaptation to the cost of antibiotic resistance. We then use sequence data to show that the beneficial mutations associated with fitness recovery were specific to particular genetic backgrounds, suggesting that genotypes had access to different sets of beneficial mutations. When we manipulated the supply rate of beneficial mutations, by altering effective population size during evolution, we found that it constrained adaptation in some selection lines by restricting access to rare beneficial mutations, but that the effect varied among the genotypes in our experiment. These results suggest that mutational neighbourhood varies even among genotypes that differ by a single amino acid change, and this determines their capacity for adaptation as well as the influence of population biology processes that alter mutation supply rate.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>19889704</pmid><doi>10.1098/rspb.2009.1630</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 2010-02, Vol.277 (1681), p.643-650
issn 0962-8452
1471-2954
1471-2945
language eng
recordid cdi_jstor_primary_40506164
source PubMed Central; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list); JSTOR Journals and Primary Sources
subjects Adaptation, Biological - genetics
Amino acids
Bacteria
Bacterial Proteins - genetics
Base Sequence
Biological adaptation
Compensatory Adaptation
Directed Molecular Evolution
DNA Primers - genetics
Drug Resistance, Microbial - genetics
Ecological competition
Evolution
Evolutionary genetics
Experimental Evolution
Genetic mutation
Genotype
Genotypes
Molecular Sequence Data
Mutation - genetics
Mutational Neighbourhood
Population genetics
Population size
Pseudomonas aeruginosa
Pseudomonas aeruginosa - genetics
Pseudomonas aeruginosa - physiology
Rifampin
Selection, Genetic
Sequence Analysis, DNA
title Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutational%20neighbourhood%20and%20mutation%20supply%20rate%20constrain%20adaptation%20in%20Pseudomonas%20aeruginosa&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Hall,%20Alex%20R.&rft.date=2010-02-22&rft.volume=277&rft.issue=1681&rft.spage=643&rft.epage=650&rft.pages=643-650&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2009.1630&rft_dat=%3Cjstor_cross%3E40506164%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c674t-edcf556e927cd256219176bd5ab8832636134ecef6964b8e6269aa1b076a5583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733805455&rft_id=info:pmid/19889704&rft_jstor_id=40506164&rfr_iscdi=true