Loading…
Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa
Understanding adaptation by natural selection requires understanding the genetic factors that determine which beneficial mutations are available for selection. Here, using experimental evolution of rifampicin-resistant Pseudomonas aeruginosa, we show that different genotypes vary in their capacity f...
Saved in:
Published in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2010-02, Vol.277 (1681), p.643-650 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c674t-edcf556e927cd256219176bd5ab8832636134ecef6964b8e6269aa1b076a5583 |
---|---|
cites | cdi_FETCH-LOGICAL-c674t-edcf556e927cd256219176bd5ab8832636134ecef6964b8e6269aa1b076a5583 |
container_end_page | 650 |
container_issue | 1681 |
container_start_page | 643 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 277 |
creator | Hall, Alex R. Griffiths, Victoria F. MacLean, R. Craig Colegrave, Nick |
description | Understanding adaptation by natural selection requires understanding the genetic factors that determine which beneficial mutations are available for selection. Here, using experimental evolution of rifampicin-resistant Pseudomonas aeruginosa, we show that different genotypes vary in their capacity for adaptation to the cost of antibiotic resistance. We then use sequence data to show that the beneficial mutations associated with fitness recovery were specific to particular genetic backgrounds, suggesting that genotypes had access to different sets of beneficial mutations. When we manipulated the supply rate of beneficial mutations, by altering effective population size during evolution, we found that it constrained adaptation in some selection lines by restricting access to rare beneficial mutations, but that the effect varied among the genotypes in our experiment. These results suggest that mutational neighbourhood varies even among genotypes that differ by a single amino acid change, and this determines their capacity for adaptation as well as the influence of population biology processes that alter mutation supply rate. |
doi_str_mv | 10.1098/rspb.2009.1630 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_jstor_primary_40506164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40506164</jstor_id><sourcerecordid>40506164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c674t-edcf556e927cd256219176bd5ab8832636134ecef6964b8e6269aa1b076a5583</originalsourceid><addsrcrecordid>eNp9Uk2P0zAQjRCILQtXbqDcOKXYjr9yQWIrvlaLWC0VBy6Dk7itu2kc7KQQfj3OJip0EXuyrHnz3pt5E0VPMZpjlMmXzjf5nCCUzTFP0b1ohqnACckYvR_NUMZJIikjJ9Ej77cowJhkD6MTnEmZCURn0bePXataY2tVxbU2601uO7extoxVXca7qRj7rmmqPnaq1XFha986ZepYlaqZAOF36XVX2l2g8rHSrlub2nr1OHqwUpXXT6b3NFq-fbNcvE8uPr37sHh9kRRc0DbRZbFijOuMiKIkjBOcYcHzkqlcypTwlOOU6kKveMZpLjUnPFMK50hwxZhMT6NXI23T5btAputgsYLGmZ1yPVhl4LhSmw2s7R6IpIEKB4IXE4Gz3zvtW9gZX-iqUrW2nQeRphIxylhAzkdk4az3Tq8OKhjBEAoMocAQCgyhhIbnf3v7A59SCIDrEeBsH3ZkC6PbHrYhiRCLh6vPl2d7IoTBXGJAMsVIEJEK-GWaSUsIMN53Gm4gx_r_2knvUvvvEM_Grq1vrTvMQBFDHPNhhmSsG9_qn4e6ctfAg1cGXySFxVd6TsT5EoYtXo34TTi6H8ZpOLJzox4urQ1xgVau6icvCEh2e8BVV4Woy1UgZXeS2r5xPr_Vvsfpby9HCdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733805455</pqid></control><display><type>article</type><title>Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa</title><source>PubMed Central</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><source>JSTOR Journals and Primary Sources</source><creator>Hall, Alex R. ; Griffiths, Victoria F. ; MacLean, R. Craig ; Colegrave, Nick</creator><creatorcontrib>Hall, Alex R. ; Griffiths, Victoria F. ; MacLean, R. Craig ; Colegrave, Nick</creatorcontrib><description>Understanding adaptation by natural selection requires understanding the genetic factors that determine which beneficial mutations are available for selection. Here, using experimental evolution of rifampicin-resistant Pseudomonas aeruginosa, we show that different genotypes vary in their capacity for adaptation to the cost of antibiotic resistance. We then use sequence data to show that the beneficial mutations associated with fitness recovery were specific to particular genetic backgrounds, suggesting that genotypes had access to different sets of beneficial mutations. When we manipulated the supply rate of beneficial mutations, by altering effective population size during evolution, we found that it constrained adaptation in some selection lines by restricting access to rare beneficial mutations, but that the effect varied among the genotypes in our experiment. These results suggest that mutational neighbourhood varies even among genotypes that differ by a single amino acid change, and this determines their capacity for adaptation as well as the influence of population biology processes that alter mutation supply rate.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>EISSN: 1471-2945</identifier><identifier>DOI: 10.1098/rspb.2009.1630</identifier><identifier>PMID: 19889704</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Adaptation, Biological - genetics ; Amino acids ; Bacteria ; Bacterial Proteins - genetics ; Base Sequence ; Biological adaptation ; Compensatory Adaptation ; Directed Molecular Evolution ; DNA Primers - genetics ; Drug Resistance, Microbial - genetics ; Ecological competition ; Evolution ; Evolutionary genetics ; Experimental Evolution ; Genetic mutation ; Genotype ; Genotypes ; Molecular Sequence Data ; Mutation - genetics ; Mutational Neighbourhood ; Population genetics ; Population size ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - physiology ; Rifampin ; Selection, Genetic ; Sequence Analysis, DNA</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 2010-02, Vol.277 (1681), p.643-650</ispartof><rights>Copyright 2010 The Royal Society</rights><rights>2009 The Royal Society</rights><rights>2009 The Royal Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c674t-edcf556e927cd256219176bd5ab8832636134ecef6964b8e6269aa1b076a5583</citedby><cites>FETCH-LOGICAL-c674t-edcf556e927cd256219176bd5ab8832636134ecef6964b8e6269aa1b076a5583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40506164$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40506164$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19889704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, Alex R.</creatorcontrib><creatorcontrib>Griffiths, Victoria F.</creatorcontrib><creatorcontrib>MacLean, R. Craig</creatorcontrib><creatorcontrib>Colegrave, Nick</creatorcontrib><title>Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc. R. Soc. B</addtitle><addtitle>Proc. R. Soc. B</addtitle><description>Understanding adaptation by natural selection requires understanding the genetic factors that determine which beneficial mutations are available for selection. Here, using experimental evolution of rifampicin-resistant Pseudomonas aeruginosa, we show that different genotypes vary in their capacity for adaptation to the cost of antibiotic resistance. We then use sequence data to show that the beneficial mutations associated with fitness recovery were specific to particular genetic backgrounds, suggesting that genotypes had access to different sets of beneficial mutations. When we manipulated the supply rate of beneficial mutations, by altering effective population size during evolution, we found that it constrained adaptation in some selection lines by restricting access to rare beneficial mutations, but that the effect varied among the genotypes in our experiment. These results suggest that mutational neighbourhood varies even among genotypes that differ by a single amino acid change, and this determines their capacity for adaptation as well as the influence of population biology processes that alter mutation supply rate.</description><subject>Adaptation, Biological - genetics</subject><subject>Amino acids</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Base Sequence</subject><subject>Biological adaptation</subject><subject>Compensatory Adaptation</subject><subject>Directed Molecular Evolution</subject><subject>DNA Primers - genetics</subject><subject>Drug Resistance, Microbial - genetics</subject><subject>Ecological competition</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Experimental Evolution</subject><subject>Genetic mutation</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Mutational Neighbourhood</subject><subject>Population genetics</subject><subject>Population size</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>Rifampin</subject><subject>Selection, Genetic</subject><subject>Sequence Analysis, DNA</subject><issn>0962-8452</issn><issn>1471-2954</issn><issn>1471-2945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9Uk2P0zAQjRCILQtXbqDcOKXYjr9yQWIrvlaLWC0VBy6Dk7itu2kc7KQQfj3OJip0EXuyrHnz3pt5E0VPMZpjlMmXzjf5nCCUzTFP0b1ohqnACckYvR_NUMZJIikjJ9Ej77cowJhkD6MTnEmZCURn0bePXataY2tVxbU2601uO7extoxVXca7qRj7rmmqPnaq1XFha986ZepYlaqZAOF36XVX2l2g8rHSrlub2nr1OHqwUpXXT6b3NFq-fbNcvE8uPr37sHh9kRRc0DbRZbFijOuMiKIkjBOcYcHzkqlcypTwlOOU6kKveMZpLjUnPFMK50hwxZhMT6NXI23T5btAputgsYLGmZ1yPVhl4LhSmw2s7R6IpIEKB4IXE4Gz3zvtW9gZX-iqUrW2nQeRphIxylhAzkdk4az3Tq8OKhjBEAoMocAQCgyhhIbnf3v7A59SCIDrEeBsH3ZkC6PbHrYhiRCLh6vPl2d7IoTBXGJAMsVIEJEK-GWaSUsIMN53Gm4gx_r_2knvUvvvEM_Grq1vrTvMQBFDHPNhhmSsG9_qn4e6ctfAg1cGXySFxVd6TsT5EoYtXo34TTi6H8ZpOLJzox4urQ1xgVau6icvCEh2e8BVV4Woy1UgZXeS2r5xPr_Vvsfpby9HCdQ</recordid><startdate>20100222</startdate><enddate>20100222</enddate><creator>Hall, Alex R.</creator><creator>Griffiths, Victoria F.</creator><creator>MacLean, R. Craig</creator><creator>Colegrave, Nick</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100222</creationdate><title>Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa</title><author>Hall, Alex R. ; Griffiths, Victoria F. ; MacLean, R. Craig ; Colegrave, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c674t-edcf556e927cd256219176bd5ab8832636134ecef6964b8e6269aa1b076a5583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation, Biological - genetics</topic><topic>Amino acids</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Base Sequence</topic><topic>Biological adaptation</topic><topic>Compensatory Adaptation</topic><topic>Directed Molecular Evolution</topic><topic>DNA Primers - genetics</topic><topic>Drug Resistance, Microbial - genetics</topic><topic>Ecological competition</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Experimental Evolution</topic><topic>Genetic mutation</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Mutational Neighbourhood</topic><topic>Population genetics</topic><topic>Population size</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>Rifampin</topic><topic>Selection, Genetic</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Alex R.</creatorcontrib><creatorcontrib>Griffiths, Victoria F.</creatorcontrib><creatorcontrib>MacLean, R. Craig</creatorcontrib><creatorcontrib>Colegrave, Nick</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Alex R.</au><au>Griffiths, Victoria F.</au><au>MacLean, R. Craig</au><au>Colegrave, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><stitle>Proc. R. Soc. B</stitle><addtitle>Proc. R. Soc. B</addtitle><date>2010-02-22</date><risdate>2010</risdate><volume>277</volume><issue>1681</issue><spage>643</spage><epage>650</epage><pages>643-650</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><eissn>1471-2945</eissn><abstract>Understanding adaptation by natural selection requires understanding the genetic factors that determine which beneficial mutations are available for selection. Here, using experimental evolution of rifampicin-resistant Pseudomonas aeruginosa, we show that different genotypes vary in their capacity for adaptation to the cost of antibiotic resistance. We then use sequence data to show that the beneficial mutations associated with fitness recovery were specific to particular genetic backgrounds, suggesting that genotypes had access to different sets of beneficial mutations. When we manipulated the supply rate of beneficial mutations, by altering effective population size during evolution, we found that it constrained adaptation in some selection lines by restricting access to rare beneficial mutations, but that the effect varied among the genotypes in our experiment. These results suggest that mutational neighbourhood varies even among genotypes that differ by a single amino acid change, and this determines their capacity for adaptation as well as the influence of population biology processes that alter mutation supply rate.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>19889704</pmid><doi>10.1098/rspb.2009.1630</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 2010-02, Vol.277 (1681), p.643-650 |
issn | 0962-8452 1471-2954 1471-2945 |
language | eng |
recordid | cdi_jstor_primary_40506164 |
source | PubMed Central; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list); JSTOR Journals and Primary Sources |
subjects | Adaptation, Biological - genetics Amino acids Bacteria Bacterial Proteins - genetics Base Sequence Biological adaptation Compensatory Adaptation Directed Molecular Evolution DNA Primers - genetics Drug Resistance, Microbial - genetics Ecological competition Evolution Evolutionary genetics Experimental Evolution Genetic mutation Genotype Genotypes Molecular Sequence Data Mutation - genetics Mutational Neighbourhood Population genetics Population size Pseudomonas aeruginosa Pseudomonas aeruginosa - genetics Pseudomonas aeruginosa - physiology Rifampin Selection, Genetic Sequence Analysis, DNA |
title | Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutational%20neighbourhood%20and%20mutation%20supply%20rate%20constrain%20adaptation%20in%20Pseudomonas%20aeruginosa&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Hall,%20Alex%20R.&rft.date=2010-02-22&rft.volume=277&rft.issue=1681&rft.spage=643&rft.epage=650&rft.pages=643-650&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.2009.1630&rft_dat=%3Cjstor_cross%3E40506164%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c674t-edcf556e927cd256219176bd5ab8832636134ecef6964b8e6269aa1b076a5583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733805455&rft_id=info:pmid/19889704&rft_jstor_id=40506164&rfr_iscdi=true |