Loading…

On a generalization of the Landesman-Lazer condition and Neumann problem for nonuniformly semilinear elliptic equations in an unbounded domain with nonlinear boundary condition

This paper deals with the existence of weak solutions of Neumann problem for a nonuniformly semilinear elliptic equation : $\left\{ {_{\frac{{\partial u}}{{\partial n}} = g\left( {x,u} \right)on\partial \Omega }^{ - div\left( {h\left( x \right)\nabla u} \right) + a\left( x\right)u = \lambda \theta \...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin mathématiques de la Société des sciences mathématiques de Roumanie 2014-01, Vol.57 (105) (3), p.301-317
Main Authors: Toan, Hoang Quoc, Hung, Bui Quoc
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper deals with the existence of weak solutions of Neumann problem for a nonuniformly semilinear elliptic equation : $\left\{ {_{\frac{{\partial u}}{{\partial n}} = g\left( {x,u} \right)on\partial \Omega }^{ - div\left( {h\left( x \right)\nabla u} \right) + a\left( x\right)u = \lambda \theta \left( x \right)u + f\left( {x,u} \right) - k\left( x \right)in\Omega }} \right.$ where Ω ⊂ RN, N ≥ 3 is an unbounded domain with smooth and bounded boundary ∂Ω, Ω̅ = Ω ∪ ∂Ω, h(x) ∊ $L_{loc}^1\left( \Omega \right)$, a(x) ∊ C(Ω̅), a(x) → +∞ as |x| → +∞, f(x, s), x ∊ Ω, g(x, s), x ∊ ∂Ω, are Carathéodory, k(x) ∊ L²(Ω), θ(x) ∊ L∞ (Ω̅), θ(x) ≥ 0. Our arguments is based on the minimum principle and rely essentially on a generalization of the Landesman-Lazer type condition.
ISSN:1220-3874
2065-0264