Loading…
On a generalization of the Landesman-Lazer condition and Neumann problem for nonuniformly semilinear elliptic equations in an unbounded domain with nonlinear boundary condition
This paper deals with the existence of weak solutions of Neumann problem for a nonuniformly semilinear elliptic equation : $\left\{ {_{\frac{{\partial u}}{{\partial n}} = g\left( {x,u} \right)on\partial \Omega }^{ - div\left( {h\left( x \right)\nabla u} \right) + a\left( x\right)u = \lambda \theta \...
Saved in:
Published in: | Bulletin mathématiques de la Société des sciences mathématiques de Roumanie 2014-01, Vol.57 (105) (3), p.301-317 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with the existence of weak solutions of Neumann problem for a nonuniformly semilinear elliptic equation : $\left\{ {_{\frac{{\partial u}}{{\partial n}} = g\left( {x,u} \right)on\partial \Omega }^{ - div\left( {h\left( x \right)\nabla u} \right) + a\left( x\right)u = \lambda \theta \left( x \right)u + f\left( {x,u} \right) - k\left( x \right)in\Omega }} \right.$ where Ω ⊂ RN, N ≥ 3 is an unbounded domain with smooth and bounded boundary ∂Ω, Ω̅ = Ω ∪ ∂Ω, h(x) ∊ $L_{loc}^1\left( \Omega \right)$, a(x) ∊ C(Ω̅), a(x) → +∞ as |x| → +∞, f(x, s), x ∊ Ω, g(x, s), x ∊ ∂Ω, are Carathéodory, k(x) ∊ L²(Ω), θ(x) ∊ L∞ (Ω̅), θ(x) ≥ 0. Our arguments is based on the minimum principle and rely essentially on a generalization of the Landesman-Lazer type condition. |
---|---|
ISSN: | 1220-3874 2065-0264 |