Loading…

On a generalization of the Landesman-Lazer condition and Neumann problem for nonuniformly semilinear elliptic equations in an unbounded domain with nonlinear boundary condition

This paper deals with the existence of weak solutions of Neumann problem for a nonuniformly semilinear elliptic equation : $\left\{ {_{\frac{{\partial u}}{{\partial n}} = g\left( {x,u} \right)on\partial \Omega }^{ - div\left( {h\left( x \right)\nabla u} \right) + a\left( x\right)u = \lambda \theta \...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin mathématiques de la Société des sciences mathématiques de Roumanie 2014-01, Vol.57 (105) (3), p.301-317
Main Authors: Toan, Hoang Quoc, Hung, Bui Quoc
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 317
container_issue 3
container_start_page 301
container_title Bulletin mathématiques de la Société des sciences mathématiques de Roumanie
container_volume 57 (105)
creator Toan, Hoang Quoc
Hung, Bui Quoc
description This paper deals with the existence of weak solutions of Neumann problem for a nonuniformly semilinear elliptic equation : $\left\{ {_{\frac{{\partial u}}{{\partial n}} = g\left( {x,u} \right)on\partial \Omega }^{ - div\left( {h\left( x \right)\nabla u} \right) + a\left( x\right)u = \lambda \theta \left( x \right)u + f\left( {x,u} \right) - k\left( x \right)in\Omega }} \right.$ where Ω ⊂ RN, N ≥ 3 is an unbounded domain with smooth and bounded boundary ∂Ω, Ω̅ = Ω ∪ ∂Ω, h(x) ∊ $L_{loc}^1\left( \Omega \right)$, a(x) ∊ C(Ω̅), a(x) → +∞ as |x| → +∞, f(x, s), x ∊ Ω, g(x, s), x ∊ ∂Ω, are Carathéodory, k(x) ∊ L²(Ω), θ(x) ∊ L∞ (Ω̅), θ(x) ≥ 0. Our arguments is based on the minimum principle and rely essentially on a generalization of the Landesman-Lazer type condition.
format article
fullrecord <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_43678873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43678873</jstor_id><sourcerecordid>43678873</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-d48fa6927077a10c5c2fb936b340bd0eb5b84147895e79a2bae99ac5c05b3eb13</originalsourceid><addsrcrecordid>eNpFjk1qwzAQhU1poSHNEQpzAYMsyZa9LKF_YJpNuw4je9zIyFIq25TkVD1ilTTQ1Qzz3rzvXSULzoo8ZbyQ18ki45ylolTyNlmNY88Yy5jiUqlF8rNxgPBJjgJac8TJeAe-g2lHUKNraRzQpTUeKUDjXWvOhijAG81RcrAPXlsaoPMBnHezM3Eb7AFGGow1jjAAWWv2k2mAvuYzYgRzSoHZaT9HSgutHzDevs20O8VcHs8qhsM_-y656dCOtLrMZfLx9Pi-fknrzfPr-qFO-0ypKW1l2WFRccWUwow1ecM7XYlCC8l0y0jnupSZVGWVk6qQa6SqwmhjuRakM7FM7v9y-3HyYbsPZog9tlIUqiyVEL_e3W_k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a generalization of the Landesman-Lazer condition and Neumann problem for nonuniformly semilinear elliptic equations in an unbounded domain with nonlinear boundary condition</title><source>JSTOR</source><creator>Toan, Hoang Quoc ; Hung, Bui Quoc</creator><creatorcontrib>Toan, Hoang Quoc ; Hung, Bui Quoc</creatorcontrib><description>This paper deals with the existence of weak solutions of Neumann problem for a nonuniformly semilinear elliptic equation : $\left\{ {_{\frac{{\partial u}}{{\partial n}} = g\left( {x,u} \right)on\partial \Omega }^{ - div\left( {h\left( x \right)\nabla u} \right) + a\left( x\right)u = \lambda \theta \left( x \right)u + f\left( {x,u} \right) - k\left( x \right)in\Omega }} \right.$ where Ω ⊂ RN, N ≥ 3 is an unbounded domain with smooth and bounded boundary ∂Ω, Ω̅ = Ω ∪ ∂Ω, h(x) ∊ $L_{loc}^1\left( \Omega \right)$, a(x) ∊ C(Ω̅), a(x) → +∞ as |x| → +∞, f(x, s), x ∊ Ω, g(x, s), x ∊ ∂Ω, are Carathéodory, k(x) ∊ L²(Ω), θ(x) ∊ L∞ (Ω̅), θ(x) ≥ 0. Our arguments is based on the minimum principle and rely essentially on a generalization of the Landesman-Lazer type condition.</description><identifier>ISSN: 1220-3874</identifier><identifier>EISSN: 2065-0264</identifier><language>eng</language><publisher>Societatea de Ştiinţe Mathematice Din România</publisher><ispartof>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie, 2014-01, Vol.57 (105) (3), p.301-317</ispartof><rights>Copyright ©2014 SSMR</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43678873$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43678873$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,58213,58446</link.rule.ids></links><search><creatorcontrib>Toan, Hoang Quoc</creatorcontrib><creatorcontrib>Hung, Bui Quoc</creatorcontrib><title>On a generalization of the Landesman-Lazer condition and Neumann problem for nonuniformly semilinear elliptic equations in an unbounded domain with nonlinear boundary condition</title><title>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie</title><description>This paper deals with the existence of weak solutions of Neumann problem for a nonuniformly semilinear elliptic equation : $\left\{ {_{\frac{{\partial u}}{{\partial n}} = g\left( {x,u} \right)on\partial \Omega }^{ - div\left( {h\left( x \right)\nabla u} \right) + a\left( x\right)u = \lambda \theta \left( x \right)u + f\left( {x,u} \right) - k\left( x \right)in\Omega }} \right.$ where Ω ⊂ RN, N ≥ 3 is an unbounded domain with smooth and bounded boundary ∂Ω, Ω̅ = Ω ∪ ∂Ω, h(x) ∊ $L_{loc}^1\left( \Omega \right)$, a(x) ∊ C(Ω̅), a(x) → +∞ as |x| → +∞, f(x, s), x ∊ Ω, g(x, s), x ∊ ∂Ω, are Carathéodory, k(x) ∊ L²(Ω), θ(x) ∊ L∞ (Ω̅), θ(x) ≥ 0. Our arguments is based on the minimum principle and rely essentially on a generalization of the Landesman-Lazer type condition.</description><issn>1220-3874</issn><issn>2065-0264</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFjk1qwzAQhU1poSHNEQpzAYMsyZa9LKF_YJpNuw4je9zIyFIq25TkVD1ilTTQ1Qzz3rzvXSULzoo8ZbyQ18ki45ylolTyNlmNY88Yy5jiUqlF8rNxgPBJjgJac8TJeAe-g2lHUKNraRzQpTUeKUDjXWvOhijAG81RcrAPXlsaoPMBnHezM3Eb7AFGGow1jjAAWWv2k2mAvuYzYgRzSoHZaT9HSgutHzDevs20O8VcHs8qhsM_-y656dCOtLrMZfLx9Pi-fknrzfPr-qFO-0ypKW1l2WFRccWUwow1ecM7XYlCC8l0y0jnupSZVGWVk6qQa6SqwmhjuRakM7FM7v9y-3HyYbsPZog9tlIUqiyVEL_e3W_k</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Toan, Hoang Quoc</creator><creator>Hung, Bui Quoc</creator><general>Societatea de Ştiinţe Mathematice Din România</general><scope/></search><sort><creationdate>20140101</creationdate><title>On a generalization of the Landesman-Lazer condition and Neumann problem for nonuniformly semilinear elliptic equations in an unbounded domain with nonlinear boundary condition</title><author>Toan, Hoang Quoc ; Hung, Bui Quoc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-d48fa6927077a10c5c2fb936b340bd0eb5b84147895e79a2bae99ac5c05b3eb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Toan, Hoang Quoc</creatorcontrib><creatorcontrib>Hung, Bui Quoc</creatorcontrib><jtitle>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toan, Hoang Quoc</au><au>Hung, Bui Quoc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a generalization of the Landesman-Lazer condition and Neumann problem for nonuniformly semilinear elliptic equations in an unbounded domain with nonlinear boundary condition</atitle><jtitle>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>57 (105)</volume><issue>3</issue><spage>301</spage><epage>317</epage><pages>301-317</pages><issn>1220-3874</issn><eissn>2065-0264</eissn><abstract>This paper deals with the existence of weak solutions of Neumann problem for a nonuniformly semilinear elliptic equation : $\left\{ {_{\frac{{\partial u}}{{\partial n}} = g\left( {x,u} \right)on\partial \Omega }^{ - div\left( {h\left( x \right)\nabla u} \right) + a\left( x\right)u = \lambda \theta \left( x \right)u + f\left( {x,u} \right) - k\left( x \right)in\Omega }} \right.$ where Ω ⊂ RN, N ≥ 3 is an unbounded domain with smooth and bounded boundary ∂Ω, Ω̅ = Ω ∪ ∂Ω, h(x) ∊ $L_{loc}^1\left( \Omega \right)$, a(x) ∊ C(Ω̅), a(x) → +∞ as |x| → +∞, f(x, s), x ∊ Ω, g(x, s), x ∊ ∂Ω, are Carathéodory, k(x) ∊ L²(Ω), θ(x) ∊ L∞ (Ω̅), θ(x) ≥ 0. Our arguments is based on the minimum principle and rely essentially on a generalization of the Landesman-Lazer type condition.</abstract><pub>Societatea de Ştiinţe Mathematice Din România</pub><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1220-3874
ispartof Bulletin mathématiques de la Société des sciences mathématiques de Roumanie, 2014-01, Vol.57 (105) (3), p.301-317
issn 1220-3874
2065-0264
language eng
recordid cdi_jstor_primary_43678873
source JSTOR
title On a generalization of the Landesman-Lazer condition and Neumann problem for nonuniformly semilinear elliptic equations in an unbounded domain with nonlinear boundary condition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20generalization%20of%20the%20Landesman-Lazer%20condition%20and%20Neumann%20problem%20for%20nonuniformly%20semilinear%20elliptic%20equations%20in%20an%20unbounded%20domain%20with%20nonlinear%20boundary%20condition&rft.jtitle=Bulletin%20math%C3%A9matiques%20de%20la%20Soci%C3%A9t%C3%A9%20des%20sciences%20math%C3%A9matiques%20de%20Roumanie&rft.au=Toan,%20Hoang%20Quoc&rft.date=2014-01-01&rft.volume=57%20(105)&rft.issue=3&rft.spage=301&rft.epage=317&rft.pages=301-317&rft.issn=1220-3874&rft.eissn=2065-0264&rft_id=info:doi/&rft_dat=%3Cjstor%3E43678873%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j177t-d48fa6927077a10c5c2fb936b340bd0eb5b84147895e79a2bae99ac5c05b3eb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43678873&rfr_iscdi=true