Loading…
On a generalization of the Landesman-Lazer condition and Neumann problem for nonuniformly semilinear elliptic equations in an unbounded domain with nonlinear boundary condition
This paper deals with the existence of weak solutions of Neumann problem for a nonuniformly semilinear elliptic equation : $\left\{ {_{\frac{{\partial u}}{{\partial n}} = g\left( {x,u} \right)on\partial \Omega }^{ - div\left( {h\left( x \right)\nabla u} \right) + a\left( x\right)u = \lambda \theta \...
Saved in:
Published in: | Bulletin mathématiques de la Société des sciences mathématiques de Roumanie 2014-01, Vol.57 (105) (3), p.301-317 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 317 |
container_issue | 3 |
container_start_page | 301 |
container_title | Bulletin mathématiques de la Société des sciences mathématiques de Roumanie |
container_volume | 57 (105) |
creator | Toan, Hoang Quoc Hung, Bui Quoc |
description | This paper deals with the existence of weak solutions of Neumann problem for a nonuniformly semilinear elliptic equation : $\left\{ {_{\frac{{\partial u}}{{\partial n}} = g\left( {x,u} \right)on\partial \Omega }^{ - div\left( {h\left( x \right)\nabla u} \right) + a\left( x\right)u = \lambda \theta \left( x \right)u + f\left( {x,u} \right) - k\left( x \right)in\Omega }} \right.$ where Ω ⊂ RN, N ≥ 3 is an unbounded domain with smooth and bounded boundary ∂Ω, Ω̅ = Ω ∪ ∂Ω, h(x) ∊ $L_{loc}^1\left( \Omega \right)$, a(x) ∊ C(Ω̅), a(x) → +∞ as |x| → +∞, f(x, s), x ∊ Ω, g(x, s), x ∊ ∂Ω, are Carathéodory, k(x) ∊ L²(Ω), θ(x) ∊ L∞ (Ω̅), θ(x) ≥ 0. Our arguments is based on the minimum principle and rely essentially on a generalization of the Landesman-Lazer type condition. |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_43678873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43678873</jstor_id><sourcerecordid>43678873</sourcerecordid><originalsourceid>FETCH-LOGICAL-j177t-d48fa6927077a10c5c2fb936b340bd0eb5b84147895e79a2bae99ac5c05b3eb13</originalsourceid><addsrcrecordid>eNpFjk1qwzAQhU1poSHNEQpzAYMsyZa9LKF_YJpNuw4je9zIyFIq25TkVD1ilTTQ1Qzz3rzvXSULzoo8ZbyQ18ki45ylolTyNlmNY88Yy5jiUqlF8rNxgPBJjgJac8TJeAe-g2lHUKNraRzQpTUeKUDjXWvOhijAG81RcrAPXlsaoPMBnHezM3Eb7AFGGow1jjAAWWv2k2mAvuYzYgRzSoHZaT9HSgutHzDevs20O8VcHs8qhsM_-y656dCOtLrMZfLx9Pi-fknrzfPr-qFO-0ypKW1l2WFRccWUwow1ecM7XYlCC8l0y0jnupSZVGWVk6qQa6SqwmhjuRakM7FM7v9y-3HyYbsPZog9tlIUqiyVEL_e3W_k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a generalization of the Landesman-Lazer condition and Neumann problem for nonuniformly semilinear elliptic equations in an unbounded domain with nonlinear boundary condition</title><source>JSTOR</source><creator>Toan, Hoang Quoc ; Hung, Bui Quoc</creator><creatorcontrib>Toan, Hoang Quoc ; Hung, Bui Quoc</creatorcontrib><description>This paper deals with the existence of weak solutions of Neumann problem for a nonuniformly semilinear elliptic equation : $\left\{ {_{\frac{{\partial u}}{{\partial n}} = g\left( {x,u} \right)on\partial \Omega }^{ - div\left( {h\left( x \right)\nabla u} \right) + a\left( x\right)u = \lambda \theta \left( x \right)u + f\left( {x,u} \right) - k\left( x \right)in\Omega }} \right.$ where Ω ⊂ RN, N ≥ 3 is an unbounded domain with smooth and bounded boundary ∂Ω, Ω̅ = Ω ∪ ∂Ω, h(x) ∊ $L_{loc}^1\left( \Omega \right)$, a(x) ∊ C(Ω̅), a(x) → +∞ as |x| → +∞, f(x, s), x ∊ Ω, g(x, s), x ∊ ∂Ω, are Carathéodory, k(x) ∊ L²(Ω), θ(x) ∊ L∞ (Ω̅), θ(x) ≥ 0. Our arguments is based on the minimum principle and rely essentially on a generalization of the Landesman-Lazer type condition.</description><identifier>ISSN: 1220-3874</identifier><identifier>EISSN: 2065-0264</identifier><language>eng</language><publisher>Societatea de Ştiinţe Mathematice Din România</publisher><ispartof>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie, 2014-01, Vol.57 (105) (3), p.301-317</ispartof><rights>Copyright ©2014 SSMR</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43678873$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43678873$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,58213,58446</link.rule.ids></links><search><creatorcontrib>Toan, Hoang Quoc</creatorcontrib><creatorcontrib>Hung, Bui Quoc</creatorcontrib><title>On a generalization of the Landesman-Lazer condition and Neumann problem for nonuniformly semilinear elliptic equations in an unbounded domain with nonlinear boundary condition</title><title>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie</title><description>This paper deals with the existence of weak solutions of Neumann problem for a nonuniformly semilinear elliptic equation : $\left\{ {_{\frac{{\partial u}}{{\partial n}} = g\left( {x,u} \right)on\partial \Omega }^{ - div\left( {h\left( x \right)\nabla u} \right) + a\left( x\right)u = \lambda \theta \left( x \right)u + f\left( {x,u} \right) - k\left( x \right)in\Omega }} \right.$ where Ω ⊂ RN, N ≥ 3 is an unbounded domain with smooth and bounded boundary ∂Ω, Ω̅ = Ω ∪ ∂Ω, h(x) ∊ $L_{loc}^1\left( \Omega \right)$, a(x) ∊ C(Ω̅), a(x) → +∞ as |x| → +∞, f(x, s), x ∊ Ω, g(x, s), x ∊ ∂Ω, are Carathéodory, k(x) ∊ L²(Ω), θ(x) ∊ L∞ (Ω̅), θ(x) ≥ 0. Our arguments is based on the minimum principle and rely essentially on a generalization of the Landesman-Lazer type condition.</description><issn>1220-3874</issn><issn>2065-0264</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFjk1qwzAQhU1poSHNEQpzAYMsyZa9LKF_YJpNuw4je9zIyFIq25TkVD1ilTTQ1Qzz3rzvXSULzoo8ZbyQ18ki45ylolTyNlmNY88Yy5jiUqlF8rNxgPBJjgJac8TJeAe-g2lHUKNraRzQpTUeKUDjXWvOhijAG81RcrAPXlsaoPMBnHezM3Eb7AFGGow1jjAAWWv2k2mAvuYzYgRzSoHZaT9HSgutHzDevs20O8VcHs8qhsM_-y656dCOtLrMZfLx9Pi-fknrzfPr-qFO-0ypKW1l2WFRccWUwow1ecM7XYlCC8l0y0jnupSZVGWVk6qQa6SqwmhjuRakM7FM7v9y-3HyYbsPZog9tlIUqiyVEL_e3W_k</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Toan, Hoang Quoc</creator><creator>Hung, Bui Quoc</creator><general>Societatea de Ştiinţe Mathematice Din România</general><scope/></search><sort><creationdate>20140101</creationdate><title>On a generalization of the Landesman-Lazer condition and Neumann problem for nonuniformly semilinear elliptic equations in an unbounded domain with nonlinear boundary condition</title><author>Toan, Hoang Quoc ; Hung, Bui Quoc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j177t-d48fa6927077a10c5c2fb936b340bd0eb5b84147895e79a2bae99ac5c05b3eb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Toan, Hoang Quoc</creatorcontrib><creatorcontrib>Hung, Bui Quoc</creatorcontrib><jtitle>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toan, Hoang Quoc</au><au>Hung, Bui Quoc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a generalization of the Landesman-Lazer condition and Neumann problem for nonuniformly semilinear elliptic equations in an unbounded domain with nonlinear boundary condition</atitle><jtitle>Bulletin mathématiques de la Société des sciences mathématiques de Roumanie</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>57 (105)</volume><issue>3</issue><spage>301</spage><epage>317</epage><pages>301-317</pages><issn>1220-3874</issn><eissn>2065-0264</eissn><abstract>This paper deals with the existence of weak solutions of Neumann problem for a nonuniformly semilinear elliptic equation : $\left\{ {_{\frac{{\partial u}}{{\partial n}} = g\left( {x,u} \right)on\partial \Omega }^{ - div\left( {h\left( x \right)\nabla u} \right) + a\left( x\right)u = \lambda \theta \left( x \right)u + f\left( {x,u} \right) - k\left( x \right)in\Omega }} \right.$ where Ω ⊂ RN, N ≥ 3 is an unbounded domain with smooth and bounded boundary ∂Ω, Ω̅ = Ω ∪ ∂Ω, h(x) ∊ $L_{loc}^1\left( \Omega \right)$, a(x) ∊ C(Ω̅), a(x) → +∞ as |x| → +∞, f(x, s), x ∊ Ω, g(x, s), x ∊ ∂Ω, are Carathéodory, k(x) ∊ L²(Ω), θ(x) ∊ L∞ (Ω̅), θ(x) ≥ 0. Our arguments is based on the minimum principle and rely essentially on a generalization of the Landesman-Lazer type condition.</abstract><pub>Societatea de Ştiinţe Mathematice Din România</pub><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1220-3874 |
ispartof | Bulletin mathématiques de la Société des sciences mathématiques de Roumanie, 2014-01, Vol.57 (105) (3), p.301-317 |
issn | 1220-3874 2065-0264 |
language | eng |
recordid | cdi_jstor_primary_43678873 |
source | JSTOR |
title | On a generalization of the Landesman-Lazer condition and Neumann problem for nonuniformly semilinear elliptic equations in an unbounded domain with nonlinear boundary condition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20generalization%20of%20the%20Landesman-Lazer%20condition%20and%20Neumann%20problem%20for%20nonuniformly%20semilinear%20elliptic%20equations%20in%20an%20unbounded%20domain%20with%20nonlinear%20boundary%20condition&rft.jtitle=Bulletin%20math%C3%A9matiques%20de%20la%20Soci%C3%A9t%C3%A9%20des%20sciences%20math%C3%A9matiques%20de%20Roumanie&rft.au=Toan,%20Hoang%20Quoc&rft.date=2014-01-01&rft.volume=57%20(105)&rft.issue=3&rft.spage=301&rft.epage=317&rft.pages=301-317&rft.issn=1220-3874&rft.eissn=2065-0264&rft_id=info:doi/&rft_dat=%3Cjstor%3E43678873%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j177t-d48fa6927077a10c5c2fb936b340bd0eb5b84147895e79a2bae99ac5c05b3eb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43678873&rfr_iscdi=true |