Loading…
NON C⁰ NONCONFORMING ELEMENTS FOR ELLIPTIC FOURTH ORDER SINGULAR PERTURBATION PROBLEM
In this paper we give a convergence theorem for non C⁰ nonconforming finite element to solve the elliptic fourth order singular perturbation problem. Two such kind of elements, a nine parameter triangular element and a twelve parameter rectangular element both with double set parameters, are present...
Saved in:
Published in: | Journal of computational mathematics 2005-03, Vol.23 (2), p.185-198 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we give a convergence theorem for non C⁰ nonconforming finite element to solve the elliptic fourth order singular perturbation problem. Two such kind of elements, a nine parameter triangular element and a twelve parameter rectangular element both with double set parameters, are presented. The convergence and numerical results of the two elements are given. |
---|---|
ISSN: | 0254-9409 1991-7139 |