Loading…
UNA CARACTERIZACION DE LAS BORNOLOGIAS POLARES
Let E be a regular b.c.s. (a Hausdoff l.c.s.), and let F be a normed space. We consider the spaces E¹ all bounded ( continuous ) linear mappings of E into F, provided with its natural topology (its equicontinuous bornology ). By defining En = (En-1) for every n 1, we obtain a sequence (En)n composed...
Saved in:
Published in: | Publicacions de la Secció de Matemàtiques, Universitat Autònoma de Barcelona Universitat Autònoma de Barcelona, 1980-10 (21), p.167-169 |
---|---|
Main Author: | |
Format: | Article |
Language: | Spanish |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let E be a regular b.c.s. (a Hausdoff l.c.s.), and let F be a normed space. We consider the spaces E¹ all bounded ( continuous ) linear mappings of E into F, provided with its natural topology (its equicontinuous bornology ). By defining En = (En-1) for every n 1, we obtain a sequence (En)n composed by, alternatively, b.c.s. and l.c.s.. We study the inclusion of E into E², giving a necessary and sufficient condition for a regular b.c.s. to be polar. |
---|---|
ISSN: | 0210-2978 2014-4369 |