Loading…

UNA CARACTERIZACION DE LAS BORNOLOGIAS POLARES

Let E be a regular b.c.s. (a Hausdoff l.c.s.), and let F be a normed space. We consider the spaces E¹ all bounded ( continuous ) linear mappings of E into F, provided with its natural topology (its equicontinuous bornology ). By defining En = (En-1) for every n 1, we obtain a sequence (En)n composed...

Full description

Saved in:
Bibliographic Details
Published in:Publicacions de la Secció de Matemàtiques, Universitat Autònoma de Barcelona Universitat Autònoma de Barcelona, 1980-10 (21), p.167-169
Main Author: Canela, Miguel A.
Format: Article
Language:Spanish
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let E be a regular b.c.s. (a Hausdoff l.c.s.), and let F be a normed space. We consider the spaces E¹ all bounded ( continuous ) linear mappings of E into F, provided with its natural topology (its equicontinuous bornology ). By defining En = (En-1) for every n 1, we obtain a sequence (En)n composed by, alternatively, b.c.s. and l.c.s.. We study the inclusion of E into E², giving a necessary and sufficient condition for a regular b.c.s. to be polar.
ISSN:0210-2978
2014-4369