Loading…

EIGENVALUES OF THE LAPLACIAN ON A GEODESIC BALL IN THE n-SPHERE

Let λ(n, r) and μ(n,r) be the first Dirichlet eigenvalue and the lowest nonzero Neumann eigenvalue of a geodesic ball B(r), of radius r, in the unit n-sphere sn or the real projective space pn, respectively. In this paper we compute the radii or B(r) such that λ(n, r) or, respectively, μ(n,r) is equ...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of mathematics (Taipei, Taiwan) Taiwan), 1987-12, Vol.15 (4), p.237-245
Main Author: BANG, SEUNG-JIN
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let λ(n, r) and μ(n,r) be the first Dirichlet eigenvalue and the lowest nonzero Neumann eigenvalue of a geodesic ball B(r), of radius r, in the unit n-sphere sn or the real projective space pn, respectively. In this paper we compute the radii or B(r) such that λ(n, r) or, respectively, μ(n,r) is equal to k(n+k-1) (k = 1,2,3, ...) or k(k-1)-n(n-2)/4(2k > n). Moreover, we find the procedure which estimates the small Dirichlet eigenvalues of B(r). Some conjectures will be presented.
ISSN:0379-7570