Loading…
EIGENVALUES OF THE LAPLACIAN ON A GEODESIC BALL IN THE n-SPHERE
Let λ(n, r) and μ(n,r) be the first Dirichlet eigenvalue and the lowest nonzero Neumann eigenvalue of a geodesic ball B(r), of radius r, in the unit n-sphere sn or the real projective space pn, respectively. In this paper we compute the radii or B(r) such that λ(n, r) or, respectively, μ(n,r) is equ...
Saved in:
Published in: | Chinese journal of mathematics (Taipei, Taiwan) Taiwan), 1987-12, Vol.15 (4), p.237-245 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let λ(n, r) and μ(n,r) be the first Dirichlet eigenvalue and the lowest nonzero Neumann eigenvalue of a geodesic ball B(r), of radius r, in the unit n-sphere sn or the real projective space pn, respectively. In this paper we compute the radii or B(r) such that λ(n, r) or, respectively, μ(n,r) is equal to k(n+k-1) (k = 1,2,3, ...) or k(k-1)-n(n-2)/4(2k > n). Moreover, we find the procedure which estimates the small Dirichlet eigenvalues of B(r). Some conjectures will be presented. |
---|---|
ISSN: | 0379-7570 |