Loading…

An Extensive Comparison of Quantitative Trait Loci Mapping Methods

Background: The choices of study design and statistical approach for mapping a quantitative trait (QT) are of great importance. Larger sibships and a study design based upon phenotypically extreme siblings can be expected to have a greater statistical power. On the other hand, selected samples and/o...

Full description

Saved in:
Bibliographic Details
Published in:Human heredity 2010-01, Vol.69 (3), p.202-211
Main Authors: Kleensang, A., Franke, D., Alcaïs, A., Abel, L., Müller-Myhsok, B., Ziegler, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: The choices of study design and statistical approach for mapping a quantitative trait (QT) are of great importance. Larger sibships and a study design based upon phenotypically extreme siblings can be expected to have a greater statistical power. On the other hand, selected samples and/or deviation from normality can influence the robustness and power. Unfortunately, the effects of violation of multivariate normality assumptions and/or selected samples are only known for a limited number of methods. Some recommendations are available in the literature, but an extensive comparison of robustness and power under several different conditions is lacking. Methods: We compared eight freely available and commonly applied QT mapping methods in a Monte-Carlo simulation study under 36 different models and study designs (three genetic models, three selection schemes, two family structures and the possible effect of deviation from normality). Results: Empirical type I error fractions and empirical power are presented and explained as a whole and for each method separately, followed by a thorough discussion. Conclusions: The results from this extensive comparison could serve as a valuable source for the choice of the study design and the statistical approach for mapping a QT.
ISSN:0001-5652
1423-0062
DOI:10.1159/000289596