Loading…

Role of Vac8 in Cellular Degradation Pathways in Pichia pastoris

We have identified the Pichia pastoris Vac8 homolog, a 60-64 kDa armadillo repeat protein, and have examined the role of PpVac8 in the degradative pathways involving the yeast vacuole. We report here that PpVac8 is required for glucose-induced pexophagy and mitophagy, but not ethanol-induced pexopha...

Full description

Saved in:
Bibliographic Details
Published in:Autophagy 2006-10, Vol.2 (4), p.280-288
Main Authors: Fry, Michelle R., Thomson, J. Michael, Tomasini, Amber J., Dunn Jr, William A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have identified the Pichia pastoris Vac8 homolog, a 60-64 kDa armadillo repeat protein, and have examined the role of PpVac8 in the degradative pathways involving the yeast vacuole. We report here that PpVac8 is required for glucose-induced pexophagy and mitophagy, but not ethanol-induced pexophagy or starvation-induced autophagy. This has been demonstrated by the persistence of peroxisomal alcohol oxidase activity and GFP-labeled mitochondria in mutants lacking PpVac8 during glucose adaptation. During glucose-induced micropexophagy, in the absence of PpVac8, the vacuole was invaginated with arm-like "segmented" extensions that almost completely surrounded the adjacent peroxisomes. PpVac8-GFP was found at the vacuolar membrane and concentrated at the base of the sequestering membranes that extend from the vacuole to engulf the peroxisomes. The localization of PpVac8-GFP to the vacuolar membrane occurred independent of PpAtg1, PpAtg9 or PpAtg11. Mutagenesis of the palmitoylated cysteines to alanines or deletion of the myristoylation and palmitoylation sites of PpVac8, resulted in an impaired vacuolar association and decreased degradation of alcohol oxidase. Deletion of the central armadillo repeat domains of the PpVac8 did not alter its association with the vacuolar membrane, but resulted in a nonfunctional protein that suppressed the formation of the arm-like extensions from the vacuole to engulf the peroxisomes. PpVac8 is essential for the trafficking of PpAtg11, but not PpAtg1 or PpAtg18, to the vacuole membrane. Together, our results support a role for PpVac8 in early (formation of sequestering membranes) and late (post-MIPA membrane fusion) molecular events of glucose-induced pexophagy.
ISSN:1554-8627
1554-8635
DOI:10.4161/auto.3164