Loading…

A NOTE ON SUGIHARA ALGEBRAS

In [4] Blok and Pigozzi prove syntactically that RM, the propositional calculus also called R-Mingle, is algebraizable, and as a consequence there is a unique quasivariety (the so-called equivalent quasivariety semantics) associated to it. In [3] it is stated that this quasivariety is the variety of...

Full description

Saved in:
Bibliographic Details
Published in:Publicacions matemàtiques 1992-01, Vol.36 (2A), p.591-599
Main Authors: Font, Josep M., Pérez, Gonzalo Rodríguez
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In [4] Blok and Pigozzi prove syntactically that RM, the propositional calculus also called R-Mingle, is algebraizable, and as a consequence there is a unique quasivariety (the so-called equivalent quasivariety semantics) associated to it. In [3] it is stated that this quasivariety is the variety of Sugihara algebras. Starting from this fact, in this paper we present an equational base for this variety obtained as a subvariety of the variety of R-algebras, found in [7] to be associated in the same sense to the calculus R of relevance logic, and we determine the totally ordered, the subdirectly irreducible, and the simple members of this variety, by using some consequences of the algebraizability of the logic RM (R-Mingle) with which they are associated.
ISSN:0214-1493
2014-4350
DOI:10.5565/PUBLMAT_362A92_19