Loading…
A NOTE ON SUGIHARA ALGEBRAS
In [4] Blok and Pigozzi prove syntactically that RM, the propositional calculus also called R-Mingle, is algebraizable, and as a consequence there is a unique quasivariety (the so-called equivalent quasivariety semantics) associated to it. In [3] it is stated that this quasivariety is the variety of...
Saved in:
Published in: | Publicacions matemàtiques 1992-01, Vol.36 (2A), p.591-599 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2339-42c66bb6e233c3200d788dd11658705cd97539e7df473c92617af36f967ad7353 |
---|---|
cites | |
container_end_page | 599 |
container_issue | 2A |
container_start_page | 591 |
container_title | Publicacions matemàtiques |
container_volume | 36 |
creator | Font, Josep M. Pérez, Gonzalo Rodríguez |
description | In [4] Blok and Pigozzi prove syntactically that RM, the propositional calculus also called R-Mingle, is algebraizable, and as a consequence there is a unique quasivariety (the so-called equivalent quasivariety semantics) associated to it. In [3] it is stated that this quasivariety is the variety of Sugihara algebras. Starting from this fact, in this paper we present an equational base for this variety obtained as a subvariety of the variety of R-algebras, found in [7] to be associated in the same sense to the calculus R of relevance logic, and we determine the totally ordered, the subdirectly irreducible, and the simple members of this variety, by using some consequences of the algebraizability of the logic RM (R-Mingle) with which they are associated. |
doi_str_mv | 10.5565/PUBLMAT_362A92_19 |
format | article |
fullrecord | <record><control><sourceid>jstor_latin</sourceid><recordid>TN_cdi_latinindex_primary_oai_record_407291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43736389</jstor_id><sourcerecordid>43736389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2339-42c66bb6e233c3200d788dd11658705cd97539e7df473c92617af36f967ad7353</originalsourceid><addsrcrecordid>eNplkFtLAzEQhYMoWKs_QETYd1lNMrlsHtNS28LaSi_PIU2ysKV2Jamg_94tq0XwYZg5zPnOw0HoluBHzgV_el0Pyhe9MiCoVtQQdYZ6FBOWM-D4HPUwbW_CFFyiq5S2GNOiwKyH7nQ2m69G2XyWLdfj6UQvdKbL8Wiw0MtrdFHZXQo3P7uP1s-j1XCSl_PxdKjL3FEAlTPqhNhsRGiVA4qxl0XhPSGCFxJz55XkoIL0FZPgFBVE2gpEpYS0XgKHPnrocnf2UO_rvQ-f5j3WbzZ-mcbWJgbXRG8YllSR1k06t0sf7vgL0dnDr7ETx6Gt3QBnBcV_mNikFEN1yifYHPsz__prmfuO2aZDE08AAwkCCgXfT-NoSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A NOTE ON SUGIHARA ALGEBRAS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Font, Josep M. ; Pérez, Gonzalo Rodríguez</creator><creatorcontrib>Font, Josep M. ; Pérez, Gonzalo Rodríguez</creatorcontrib><description>In [4] Blok and Pigozzi prove syntactically that RM, the propositional calculus also called R-Mingle, is algebraizable, and as a consequence there is a unique quasivariety (the so-called equivalent quasivariety semantics) associated to it. In [3] it is stated that this quasivariety is the variety of Sugihara algebras. Starting from this fact, in this paper we present an equational base for this variety obtained as a subvariety of the variety of R-algebras, found in [7] to be associated in the same sense to the calculus R of relevance logic, and we determine the totally ordered, the subdirectly irreducible, and the simple members of this variety, by using some consequences of the algebraizability of the logic RM (R-Mingle) with which they are associated.</description><identifier>ISSN: 0214-1493</identifier><identifier>EISSN: 2014-4350</identifier><identifier>DOI: 10.5565/PUBLMAT_362A92_19</identifier><language>eng</language><publisher>Universitat Autònoma de Barcelona</publisher><subject>Abstract algebra ; Algebra ; Anells (Àlgebra) ; Axioms ; Logical theorems ; Mathematical theorems ; Relevance logic ; Rings (Algebra) ; Semantics ; Semigroups ; Typographic fonts ; Universal algebra ; Àlgebra</subject><ispartof>Publicacions matemàtiques, 1992-01, Vol.36 (2A), p.591-599</ispartof><rights>(c) Universitat Autònoma de Barcelona, 1992 info:eu-repo/semantics/openAccess</rights><rights>free</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2339-42c66bb6e233c3200d788dd11658705cd97539e7df473c92617af36f967ad7353</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43736389$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43736389$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Font, Josep M.</creatorcontrib><creatorcontrib>Pérez, Gonzalo Rodríguez</creatorcontrib><title>A NOTE ON SUGIHARA ALGEBRAS</title><title>Publicacions matemàtiques</title><description>In [4] Blok and Pigozzi prove syntactically that RM, the propositional calculus also called R-Mingle, is algebraizable, and as a consequence there is a unique quasivariety (the so-called equivalent quasivariety semantics) associated to it. In [3] it is stated that this quasivariety is the variety of Sugihara algebras. Starting from this fact, in this paper we present an equational base for this variety obtained as a subvariety of the variety of R-algebras, found in [7] to be associated in the same sense to the calculus R of relevance logic, and we determine the totally ordered, the subdirectly irreducible, and the simple members of this variety, by using some consequences of the algebraizability of the logic RM (R-Mingle) with which they are associated.</description><subject>Abstract algebra</subject><subject>Algebra</subject><subject>Anells (Àlgebra)</subject><subject>Axioms</subject><subject>Logical theorems</subject><subject>Mathematical theorems</subject><subject>Relevance logic</subject><subject>Rings (Algebra)</subject><subject>Semantics</subject><subject>Semigroups</subject><subject>Typographic fonts</subject><subject>Universal algebra</subject><subject>Àlgebra</subject><issn>0214-1493</issn><issn>2014-4350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNplkFtLAzEQhYMoWKs_QETYd1lNMrlsHtNS28LaSi_PIU2ysKV2Jamg_94tq0XwYZg5zPnOw0HoluBHzgV_el0Pyhe9MiCoVtQQdYZ6FBOWM-D4HPUwbW_CFFyiq5S2GNOiwKyH7nQ2m69G2XyWLdfj6UQvdKbL8Wiw0MtrdFHZXQo3P7uP1s-j1XCSl_PxdKjL3FEAlTPqhNhsRGiVA4qxl0XhPSGCFxJz55XkoIL0FZPgFBVE2gpEpYS0XgKHPnrocnf2UO_rvQ-f5j3WbzZ-mcbWJgbXRG8YllSR1k06t0sf7vgL0dnDr7ETx6Gt3QBnBcV_mNikFEN1yifYHPsz__prmfuO2aZDE08AAwkCCgXfT-NoSA</recordid><startdate>19920101</startdate><enddate>19920101</enddate><creator>Font, Josep M.</creator><creator>Pérez, Gonzalo Rodríguez</creator><general>Universitat Autònoma de Barcelona</general><general>Universitat Autònoma de Barcelona: Servei de Publicacions</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope><scope>77F</scope></search><sort><creationdate>19920101</creationdate><title>A NOTE ON SUGIHARA ALGEBRAS</title><author>Font, Josep M. ; Pérez, Gonzalo Rodríguez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2339-42c66bb6e233c3200d788dd11658705cd97539e7df473c92617af36f967ad7353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Abstract algebra</topic><topic>Algebra</topic><topic>Anells (Àlgebra)</topic><topic>Axioms</topic><topic>Logical theorems</topic><topic>Mathematical theorems</topic><topic>Relevance logic</topic><topic>Rings (Algebra)</topic><topic>Semantics</topic><topic>Semigroups</topic><topic>Typographic fonts</topic><topic>Universal algebra</topic><topic>Àlgebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Font, Josep M.</creatorcontrib><creatorcontrib>Pérez, Gonzalo Rodríguez</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><collection>Latindex</collection><jtitle>Publicacions matemàtiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Font, Josep M.</au><au>Pérez, Gonzalo Rodríguez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NOTE ON SUGIHARA ALGEBRAS</atitle><jtitle>Publicacions matemàtiques</jtitle><date>1992-01-01</date><risdate>1992</risdate><volume>36</volume><issue>2A</issue><spage>591</spage><epage>599</epage><pages>591-599</pages><issn>0214-1493</issn><eissn>2014-4350</eissn><abstract>In [4] Blok and Pigozzi prove syntactically that RM, the propositional calculus also called R-Mingle, is algebraizable, and as a consequence there is a unique quasivariety (the so-called equivalent quasivariety semantics) associated to it. In [3] it is stated that this quasivariety is the variety of Sugihara algebras. Starting from this fact, in this paper we present an equational base for this variety obtained as a subvariety of the variety of R-algebras, found in [7] to be associated in the same sense to the calculus R of relevance logic, and we determine the totally ordered, the subdirectly irreducible, and the simple members of this variety, by using some consequences of the algebraizability of the logic RM (R-Mingle) with which they are associated.</abstract><pub>Universitat Autònoma de Barcelona</pub><doi>10.5565/PUBLMAT_362A92_19</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0214-1493 |
ispartof | Publicacions matemàtiques, 1992-01, Vol.36 (2A), p.591-599 |
issn | 0214-1493 2014-4350 |
language | eng |
recordid | cdi_latinindex_primary_oai_record_407291 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Abstract algebra Algebra Anells (Àlgebra) Axioms Logical theorems Mathematical theorems Relevance logic Rings (Algebra) Semantics Semigroups Typographic fonts Universal algebra Àlgebra |
title | A NOTE ON SUGIHARA ALGEBRAS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_latin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NOTE%20ON%20SUGIHARA%20ALGEBRAS&rft.jtitle=Publicacions%20matem%C3%A0tiques&rft.au=Font,%20Josep%20M.&rft.date=1992-01-01&rft.volume=36&rft.issue=2A&rft.spage=591&rft.epage=599&rft.pages=591-599&rft.issn=0214-1493&rft.eissn=2014-4350&rft_id=info:doi/10.5565/PUBLMAT_362A92_19&rft_dat=%3Cjstor_latin%3E43736389%3C/jstor_latin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2339-42c66bb6e233c3200d788dd11658705cd97539e7df473c92617af36f967ad7353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43736389&rfr_iscdi=true |