Loading…
Intégrales stochastiques de processus anticipants et projections duales prévisibles
We define a stochastic anticipating integral $\delta^\mu$ with respect to Brownian motion, associated to a non adapted increasing process $(\mu_t)$, with dual projection $t$. The integral $\delta^\mu (u) $ of an anticipating process $(u_t)$ satisfies: for every bounded predictable process $f_t$, $$...
Saved in:
Published in: | Publicacions matemàtiques 1999, Vol.43 (1), p.281-301 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | eng ; fre |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We define a stochastic anticipating integral $\delta^\mu$ with respect to Brownian motion, associated to a non adapted increasing process $(\mu_t)$, with dual projection $t$. The integral $\delta^\mu (u) $ of an anticipating process $(u_t)$ satisfies: for every bounded predictable process $f_t$,
$$
E\left[\left(\int f_s\, dB_s\right) \delta^\mu (u)\right ] =
E\left[ \int f_s u_s \, d\mu_s\right].
$$
We characterize this integral when $\mu_t = \sup_{t \leq s \leq 1} B_s$. The proof relies on a path decomposition of Brownian motion up to time 1. |
---|---|
ISSN: | 0214-1493 2014-4350 |
DOI: | 10.5565/PUBLMAT_43199_13 |