Loading…

Intégrales stochastiques de processus anticipants et projections duales prévisibles

We define a stochastic anticipating integral $\delta^\mu$ with respect to Brownian motion, associated to a non adapted increasing process $(\mu_t)$, with dual projection $t$. The integral $\delta^\mu (u) $ of an anticipating process $(u_t)$ satisfies: for every bounded predictable process $f_t$, $$...

Full description

Saved in:
Bibliographic Details
Published in:Publicacions matemàtiques 1999, Vol.43 (1), p.281-301
Main Authors: Donati-Martin, C., Yor, M.
Format: Article
Language:eng ; fre
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 301
container_issue 1
container_start_page 281
container_title Publicacions matemàtiques
container_volume 43
creator Donati-Martin, C.
Yor, M.
description We define a stochastic anticipating integral $\delta^\mu$ with respect to Brownian motion, associated to a non adapted increasing process $(\mu_t)$, with dual projection $t$. The integral $\delta^\mu (u) $ of an anticipating process $(u_t)$ satisfies: for every bounded predictable process $f_t$, $$ E\left[\left(\int f_s\, dB_s\right) \delta^\mu (u)\right ] = E\left[ \int f_s u_s \, d\mu_s\right]. $$ We characterize this integral when $\mu_t = \sup_{t \leq s \leq 1} B_s$. The proof relies on a path decomposition of Brownian motion up to time 1.
doi_str_mv 10.5565/PUBLMAT_43199_13
format article
fullrecord <record><control><sourceid>jstor_latin</sourceid><recordid>TN_cdi_latinindex_primary_oai_record_407689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43736661</jstor_id><sourcerecordid>43736661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1773-ff68d1d22b4accd7668423edc1660d95e8c0db169b4c755a7afc0a749e7b87423</originalsourceid><addsrcrecordid>eNpdkE1OwzAQhS0EEqWwZ4OUPSrYsWMny1LxU6kIFu3acsYOuApJsB0ER-o5ejFcgorEat5ovjczegidE3yVZTy7fl7dLB6nS8koKQpJ6AEapZiwCaMZPkQjnEZNWEGP0Yn3a4zTPMdshFbzJmw3L07Vxic-tPCqfLDvfey0STrXgvG-94lqggXbxeITE3aDtYFg2yZy_Y-5c9vNh_W2jM0pOqpU7c3Zbx2j1d3tcvYwWTzdz2fTxQSIEHRSVTzXRKdpyRSAFpznLKVGA-Ec6yIzOWBdEl6UDESWKaEqwEqwwogyFxEdo8thb62CbWyjzafsnH1T7ku2ykpnoHVaMix4XkQaDzS41ntnqj1LsNyFKP-HGC0Xg2Uds3F7nlFBOefk7wHwPUinoB3u7gSoIJWLsdVGUlFwRr8BUaeDYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intégrales stochastiques de processus anticipants et projections duales prévisibles</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Donati-Martin, C. ; Yor, M.</creator><creatorcontrib>Donati-Martin, C. ; Yor, M.</creatorcontrib><description>We define a stochastic anticipating integral $\delta^\mu$ with respect to Brownian motion, associated to a non adapted increasing process $(\mu_t)$, with dual projection $t$. The integral $\delta^\mu (u) $ of an anticipating process $(u_t)$ satisfies: for every bounded predictable process $f_t$, $$ E\left[\left(\int f_s\, dB_s\right) \delta^\mu (u)\right ] = E\left[ \int f_s u_s \, d\mu_s\right]. $$ We characterize this integral when $\mu_t = \sup_{t \leq s \leq 1} B_s$. The proof relies on a path decomposition of Brownian motion up to time 1.</description><identifier>ISSN: 0214-1493</identifier><identifier>EISSN: 2014-4350</identifier><identifier>DOI: 10.5565/PUBLMAT_43199_13</identifier><language>eng ; fre</language><publisher>Universitat Autònoma de Barcelona</publisher><subject>Ecuaciones diferenciales estocásticas ; Integración estocástica ; Movimiento browniano ; Proceso de difusión ; Procesos estocásticos</subject><ispartof>Publicacions matemàtiques, 1999, Vol.43 (1), p.281-301</ispartof><rights>free</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43736661$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43736661$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Donati-Martin, C.</creatorcontrib><creatorcontrib>Yor, M.</creatorcontrib><title>Intégrales stochastiques de processus anticipants et projections duales prévisibles</title><title>Publicacions matemàtiques</title><description>We define a stochastic anticipating integral $\delta^\mu$ with respect to Brownian motion, associated to a non adapted increasing process $(\mu_t)$, with dual projection $t$. The integral $\delta^\mu (u) $ of an anticipating process $(u_t)$ satisfies: for every bounded predictable process $f_t$, $$ E\left[\left(\int f_s\, dB_s\right) \delta^\mu (u)\right ] = E\left[ \int f_s u_s \, d\mu_s\right]. $$ We characterize this integral when $\mu_t = \sup_{t \leq s \leq 1} B_s$. The proof relies on a path decomposition of Brownian motion up to time 1.</description><subject>Ecuaciones diferenciales estocásticas</subject><subject>Integración estocástica</subject><subject>Movimiento browniano</subject><subject>Proceso de difusión</subject><subject>Procesos estocásticos</subject><issn>0214-1493</issn><issn>2014-4350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpdkE1OwzAQhS0EEqWwZ4OUPSrYsWMny1LxU6kIFu3acsYOuApJsB0ER-o5ejFcgorEat5ovjczegidE3yVZTy7fl7dLB6nS8koKQpJ6AEapZiwCaMZPkQjnEZNWEGP0Yn3a4zTPMdshFbzJmw3L07Vxic-tPCqfLDvfey0STrXgvG-94lqggXbxeITE3aDtYFg2yZy_Y-5c9vNh_W2jM0pOqpU7c3Zbx2j1d3tcvYwWTzdz2fTxQSIEHRSVTzXRKdpyRSAFpznLKVGA-Ec6yIzOWBdEl6UDESWKaEqwEqwwogyFxEdo8thb62CbWyjzafsnH1T7ku2ykpnoHVaMix4XkQaDzS41ntnqj1LsNyFKP-HGC0Xg2Uds3F7nlFBOefk7wHwPUinoB3u7gSoIJWLsdVGUlFwRr8BUaeDYg</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Donati-Martin, C.</creator><creator>Yor, M.</creator><general>Universitat Autònoma de Barcelona</general><general>Universitat Autònoma de Barcelona: Servei de Publicacions</general><scope>2VB</scope><scope>AALZO</scope><scope>AFIUA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>77F</scope></search><sort><creationdate>1999</creationdate><title>Intégrales stochastiques de processus anticipants et projections duales prévisibles</title><author>Donati-Martin, C. ; Yor, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1773-ff68d1d22b4accd7668423edc1660d95e8c0db169b4c755a7afc0a749e7b87423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; fre</language><creationdate>1999</creationdate><topic>Ecuaciones diferenciales estocásticas</topic><topic>Integración estocástica</topic><topic>Movimiento browniano</topic><topic>Proceso de difusión</topic><topic>Procesos estocásticos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donati-Martin, C.</creatorcontrib><creatorcontrib>Yor, M.</creatorcontrib><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>Revistes Catalanes amb Accés Obert (RACO) (Full Text)</collection><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>CrossRef</collection><collection>Latindex</collection><jtitle>Publicacions matemàtiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donati-Martin, C.</au><au>Yor, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intégrales stochastiques de processus anticipants et projections duales prévisibles</atitle><jtitle>Publicacions matemàtiques</jtitle><date>1999</date><risdate>1999</risdate><volume>43</volume><issue>1</issue><spage>281</spage><epage>301</epage><pages>281-301</pages><issn>0214-1493</issn><eissn>2014-4350</eissn><abstract>We define a stochastic anticipating integral $\delta^\mu$ with respect to Brownian motion, associated to a non adapted increasing process $(\mu_t)$, with dual projection $t$. The integral $\delta^\mu (u) $ of an anticipating process $(u_t)$ satisfies: for every bounded predictable process $f_t$, $$ E\left[\left(\int f_s\, dB_s\right) \delta^\mu (u)\right ] = E\left[ \int f_s u_s \, d\mu_s\right]. $$ We characterize this integral when $\mu_t = \sup_{t \leq s \leq 1} B_s$. The proof relies on a path decomposition of Brownian motion up to time 1.</abstract><pub>Universitat Autònoma de Barcelona</pub><doi>10.5565/PUBLMAT_43199_13</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0214-1493
ispartof Publicacions matemàtiques, 1999, Vol.43 (1), p.281-301
issn 0214-1493
2014-4350
language eng ; fre
recordid cdi_latinindex_primary_oai_record_407689
source JSTOR Archival Journals and Primary Sources Collection
subjects Ecuaciones diferenciales estocásticas
Integración estocástica
Movimiento browniano
Proceso de difusión
Procesos estocásticos
title Intégrales stochastiques de processus anticipants et projections duales prévisibles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_latin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Int%C3%A9grales%20stochastiques%20de%20processus%20anticipants%20et%20projections%20duales%20pr%C3%A9visibles&rft.jtitle=Publicacions%20matem%C3%A0tiques&rft.au=Donati-Martin,%20C.&rft.date=1999&rft.volume=43&rft.issue=1&rft.spage=281&rft.epage=301&rft.pages=281-301&rft.issn=0214-1493&rft.eissn=2014-4350&rft_id=info:doi/10.5565/PUBLMAT_43199_13&rft_dat=%3Cjstor_latin%3E43736661%3C/jstor_latin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1773-ff68d1d22b4accd7668423edc1660d95e8c0db169b4c755a7afc0a749e7b87423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43736661&rfr_iscdi=true