Loading…
Intégrales stochastiques de processus anticipants et projections duales prévisibles
We define a stochastic anticipating integral $\delta^\mu$ with respect to Brownian motion, associated to a non adapted increasing process $(\mu_t)$, with dual projection $t$. The integral $\delta^\mu (u) $ of an anticipating process $(u_t)$ satisfies: for every bounded predictable process $f_t$, $$...
Saved in:
Published in: | Publicacions matemàtiques 1999, Vol.43 (1), p.281-301 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | eng ; fre |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 301 |
container_issue | 1 |
container_start_page | 281 |
container_title | Publicacions matemàtiques |
container_volume | 43 |
creator | Donati-Martin, C. Yor, M. |
description | We define a stochastic anticipating integral $\delta^\mu$ with respect to Brownian motion, associated to a non adapted increasing process $(\mu_t)$, with dual projection $t$. The integral $\delta^\mu (u) $ of an anticipating process $(u_t)$ satisfies: for every bounded predictable process $f_t$,
$$
E\left[\left(\int f_s\, dB_s\right) \delta^\mu (u)\right ] =
E\left[ \int f_s u_s \, d\mu_s\right].
$$
We characterize this integral when $\mu_t = \sup_{t \leq s \leq 1} B_s$. The proof relies on a path decomposition of Brownian motion up to time 1. |
doi_str_mv | 10.5565/PUBLMAT_43199_13 |
format | article |
fullrecord | <record><control><sourceid>jstor_latin</sourceid><recordid>TN_cdi_latinindex_primary_oai_record_407689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43736661</jstor_id><sourcerecordid>43736661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1773-ff68d1d22b4accd7668423edc1660d95e8c0db169b4c755a7afc0a749e7b87423</originalsourceid><addsrcrecordid>eNpdkE1OwzAQhS0EEqWwZ4OUPSrYsWMny1LxU6kIFu3acsYOuApJsB0ER-o5ejFcgorEat5ovjczegidE3yVZTy7fl7dLB6nS8koKQpJ6AEapZiwCaMZPkQjnEZNWEGP0Yn3a4zTPMdshFbzJmw3L07Vxic-tPCqfLDvfey0STrXgvG-94lqggXbxeITE3aDtYFg2yZy_Y-5c9vNh_W2jM0pOqpU7c3Zbx2j1d3tcvYwWTzdz2fTxQSIEHRSVTzXRKdpyRSAFpznLKVGA-Ec6yIzOWBdEl6UDESWKaEqwEqwwogyFxEdo8thb62CbWyjzafsnH1T7ku2ykpnoHVaMix4XkQaDzS41ntnqj1LsNyFKP-HGC0Xg2Uds3F7nlFBOefk7wHwPUinoB3u7gSoIJWLsdVGUlFwRr8BUaeDYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intégrales stochastiques de processus anticipants et projections duales prévisibles</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Donati-Martin, C. ; Yor, M.</creator><creatorcontrib>Donati-Martin, C. ; Yor, M.</creatorcontrib><description>We define a stochastic anticipating integral $\delta^\mu$ with respect to Brownian motion, associated to a non adapted increasing process $(\mu_t)$, with dual projection $t$. The integral $\delta^\mu (u) $ of an anticipating process $(u_t)$ satisfies: for every bounded predictable process $f_t$,
$$
E\left[\left(\int f_s\, dB_s\right) \delta^\mu (u)\right ] =
E\left[ \int f_s u_s \, d\mu_s\right].
$$
We characterize this integral when $\mu_t = \sup_{t \leq s \leq 1} B_s$. The proof relies on a path decomposition of Brownian motion up to time 1.</description><identifier>ISSN: 0214-1493</identifier><identifier>EISSN: 2014-4350</identifier><identifier>DOI: 10.5565/PUBLMAT_43199_13</identifier><language>eng ; fre</language><publisher>Universitat Autònoma de Barcelona</publisher><subject>Ecuaciones diferenciales estocásticas ; Integración estocástica ; Movimiento browniano ; Proceso de difusión ; Procesos estocásticos</subject><ispartof>Publicacions matemàtiques, 1999, Vol.43 (1), p.281-301</ispartof><rights>free</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43736661$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43736661$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Donati-Martin, C.</creatorcontrib><creatorcontrib>Yor, M.</creatorcontrib><title>Intégrales stochastiques de processus anticipants et projections duales prévisibles</title><title>Publicacions matemàtiques</title><description>We define a stochastic anticipating integral $\delta^\mu$ with respect to Brownian motion, associated to a non adapted increasing process $(\mu_t)$, with dual projection $t$. The integral $\delta^\mu (u) $ of an anticipating process $(u_t)$ satisfies: for every bounded predictable process $f_t$,
$$
E\left[\left(\int f_s\, dB_s\right) \delta^\mu (u)\right ] =
E\left[ \int f_s u_s \, d\mu_s\right].
$$
We characterize this integral when $\mu_t = \sup_{t \leq s \leq 1} B_s$. The proof relies on a path decomposition of Brownian motion up to time 1.</description><subject>Ecuaciones diferenciales estocásticas</subject><subject>Integración estocástica</subject><subject>Movimiento browniano</subject><subject>Proceso de difusión</subject><subject>Procesos estocásticos</subject><issn>0214-1493</issn><issn>2014-4350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpdkE1OwzAQhS0EEqWwZ4OUPSrYsWMny1LxU6kIFu3acsYOuApJsB0ER-o5ejFcgorEat5ovjczegidE3yVZTy7fl7dLB6nS8koKQpJ6AEapZiwCaMZPkQjnEZNWEGP0Yn3a4zTPMdshFbzJmw3L07Vxic-tPCqfLDvfey0STrXgvG-94lqggXbxeITE3aDtYFg2yZy_Y-5c9vNh_W2jM0pOqpU7c3Zbx2j1d3tcvYwWTzdz2fTxQSIEHRSVTzXRKdpyRSAFpznLKVGA-Ec6yIzOWBdEl6UDESWKaEqwEqwwogyFxEdo8thb62CbWyjzafsnH1T7ku2ykpnoHVaMix4XkQaDzS41ntnqj1LsNyFKP-HGC0Xg2Uds3F7nlFBOefk7wHwPUinoB3u7gSoIJWLsdVGUlFwRr8BUaeDYg</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Donati-Martin, C.</creator><creator>Yor, M.</creator><general>Universitat Autònoma de Barcelona</general><general>Universitat Autònoma de Barcelona: Servei de Publicacions</general><scope>2VB</scope><scope>AALZO</scope><scope>AFIUA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>77F</scope></search><sort><creationdate>1999</creationdate><title>Intégrales stochastiques de processus anticipants et projections duales prévisibles</title><author>Donati-Martin, C. ; Yor, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1773-ff68d1d22b4accd7668423edc1660d95e8c0db169b4c755a7afc0a749e7b87423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; fre</language><creationdate>1999</creationdate><topic>Ecuaciones diferenciales estocásticas</topic><topic>Integración estocástica</topic><topic>Movimiento browniano</topic><topic>Proceso de difusión</topic><topic>Procesos estocásticos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donati-Martin, C.</creatorcontrib><creatorcontrib>Yor, M.</creatorcontrib><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>Revistes Catalanes amb Accés Obert (RACO) (Full Text)</collection><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>CrossRef</collection><collection>Latindex</collection><jtitle>Publicacions matemàtiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donati-Martin, C.</au><au>Yor, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intégrales stochastiques de processus anticipants et projections duales prévisibles</atitle><jtitle>Publicacions matemàtiques</jtitle><date>1999</date><risdate>1999</risdate><volume>43</volume><issue>1</issue><spage>281</spage><epage>301</epage><pages>281-301</pages><issn>0214-1493</issn><eissn>2014-4350</eissn><abstract>We define a stochastic anticipating integral $\delta^\mu$ with respect to Brownian motion, associated to a non adapted increasing process $(\mu_t)$, with dual projection $t$. The integral $\delta^\mu (u) $ of an anticipating process $(u_t)$ satisfies: for every bounded predictable process $f_t$,
$$
E\left[\left(\int f_s\, dB_s\right) \delta^\mu (u)\right ] =
E\left[ \int f_s u_s \, d\mu_s\right].
$$
We characterize this integral when $\mu_t = \sup_{t \leq s \leq 1} B_s$. The proof relies on a path decomposition of Brownian motion up to time 1.</abstract><pub>Universitat Autònoma de Barcelona</pub><doi>10.5565/PUBLMAT_43199_13</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0214-1493 |
ispartof | Publicacions matemàtiques, 1999, Vol.43 (1), p.281-301 |
issn | 0214-1493 2014-4350 |
language | eng ; fre |
recordid | cdi_latinindex_primary_oai_record_407689 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Ecuaciones diferenciales estocásticas Integración estocástica Movimiento browniano Proceso de difusión Procesos estocásticos |
title | Intégrales stochastiques de processus anticipants et projections duales prévisibles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_latin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Int%C3%A9grales%20stochastiques%20de%20processus%20anticipants%20et%20projections%20duales%20pr%C3%A9visibles&rft.jtitle=Publicacions%20matem%C3%A0tiques&rft.au=Donati-Martin,%20C.&rft.date=1999&rft.volume=43&rft.issue=1&rft.spage=281&rft.epage=301&rft.pages=281-301&rft.issn=0214-1493&rft.eissn=2014-4350&rft_id=info:doi/10.5565/PUBLMAT_43199_13&rft_dat=%3Cjstor_latin%3E43736661%3C/jstor_latin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1773-ff68d1d22b4accd7668423edc1660d95e8c0db169b4c755a7afc0a749e7b87423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43736661&rfr_iscdi=true |