Loading…
Extension et division dans les variétés à croisements normaux
Let $D$ be a bounded strictly pseudoconvex domain with smooth boundary and $f=(f_1,\dotsc, f_p)$ ($f_i\in\operatorname{Hol}(\bar D)$) a complete intersection with normal crossing. In this paper we study an extension problem in $L^{\infty}$-norm for holomorphic functions defined on $f^{-1}(0)\cap D$...
Saved in:
Published in: | Publicacions matemàtiques 2001, Vol.45 (2), p.343-369 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | eng ; fre |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $D$ be a bounded strictly pseudoconvex domain with smooth boundary and $f=(f_1,\dotsc, f_p)$ ($f_i\in\operatorname{Hol}(\bar D)$) a complete intersection with normal crossing. In this paper we study an extension problem in $L^{\infty}$-norm for holomorphic functions defined on $f^{-1}(0)\cap D$ and a decomposition formula $g=\sum_{i=1}^{p}f_ig_i$ for holomorphic functions $g\in I_{(f_1,\dotsc,f_p)}(D)$ in Lipschitz spaces. We stress that for the two problems the classical theorem cannot be applied because $f^{-1}(0)$ has singularities on the boundary $\partial D$. This work is the first step to understand this type of problem in the general singular case. |
---|---|
ISSN: | 0214-1493 2014-4350 |
DOI: | 10.5565/PUBLMAT_45201_03 |