Loading…
Topologically transitive skew-products of operators
The purpose of the present paper is to provide a link between skew-product systems and linear dynamics. In particular, we give a criterion for skew-products of linear operators to be topologically transitive. This is then applied to certain families of linear operators including scalar multiples of...
Saved in:
Published in: | Ergodic theory and dynamical systems 2010-02, Vol.30 (1), p.33-49 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of the present paper is to provide a link between skew-product systems and linear dynamics. In particular, we give a criterion for skew-products of linear operators to be topologically transitive. This is then applied to certain families of linear operators including scalar multiples of the backward shift, backward unilateral weighted shifts, composition, translation and differentiation operators. We also prove the existence of common hypercyclic vectors for certain families of skew-product systems. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/S0143385708001065 |