Loading…
Topologically transitive skew-products of operators
The purpose of the present paper is to provide a link between skew-product systems and linear dynamics. In particular, we give a criterion for skew-products of linear operators to be topologically transitive. This is then applied to certain families of linear operators including scalar multiples of...
Saved in:
Published in: | Ergodic theory and dynamical systems 2010-02, Vol.30 (1), p.33-49 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c424t-487c03a238e9d1bc91b3109af2ce26ac4a0353b0cc251cf3e60904d0f04351683 |
---|---|
cites | cdi_FETCH-LOGICAL-c424t-487c03a238e9d1bc91b3109af2ce26ac4a0353b0cc251cf3e60904d0f04351683 |
container_end_page | 49 |
container_issue | 1 |
container_start_page | 33 |
container_title | Ergodic theory and dynamical systems |
container_volume | 30 |
creator | BAYART, FRÉDÉRIC COSTAKIS, GEORGE HADJILOUCAS, DEMETRIS |
description | The purpose of the present paper is to provide a link between skew-product systems and linear dynamics. In particular, we give a criterion for skew-products of linear operators to be topologically transitive. This is then applied to certain families of linear operators including scalar multiples of the backward shift, backward unilateral weighted shifts, composition, translation and differentiation operators. We also prove the existence of common hypercyclic vectors for certain families of skew-product systems. |
doi_str_mv | 10.1017/S0143385708001065 |
format | article |
fullrecord | <record><control><sourceid>proquest_latin</sourceid><recordid>TN_cdi_latinindex_primary_oai_record_411428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0143385708001065</cupid><sourcerecordid>1961364151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-487c03a238e9d1bc91b3109af2ce26ac4a0353b0cc251cf3e60904d0f04351683</originalsourceid><addsrcrecordid>eNp1kElPwzAQhS0EEmX5AdwqbggFZrwmR1SWApUQAi5cLNdxwBDqYqcs_55EQSxCnEaa-ebNm0fIFsIeAqr9K0DOWC4U5AAIUiyRAXJZZJyjWiaDbpx181WyltIDADBUYkDYdZiHOtx5a-r6fdhEM0u-8S9umB7dazaPoVzYJg1DNQxzF00TYtogK5Wpk9v8rOvk5vjoejTOJhcnp6ODSWY55U3Gc2WBGcpyV5Q4tQVOGUJhKmodlcZyA0ywKVhLBdqKOQkF8BIq4EygzNk62e11a9P4mZ-V7k3Po38y8V0H43V0NsRSc0ROO3qnp-9N_QsbH0x01wMQSkqVv2DLbvds-9_zwqVGP4RFnLXPaNpmR1Fy0ULYQzaGlKKrvlQRdBe6_hN6u5P1Oz41P9ya-KilYkpoeXKpb89GjJ4fjjVvefZ5wzxNoy_v3LeT_698ADzOkKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206521645</pqid></control><display><type>article</type><title>Topologically transitive skew-products of operators</title><source>Cambridge University Press</source><creator>BAYART, FRÉDÉRIC ; COSTAKIS, GEORGE ; HADJILOUCAS, DEMETRIS</creator><creatorcontrib>BAYART, FRÉDÉRIC ; COSTAKIS, GEORGE ; HADJILOUCAS, DEMETRIS</creatorcontrib><description>The purpose of the present paper is to provide a link between skew-product systems and linear dynamics. In particular, we give a criterion for skew-products of linear operators to be topologically transitive. This is then applied to certain families of linear operators including scalar multiples of the backward shift, backward unilateral weighted shifts, composition, translation and differentiation operators. We also prove the existence of common hypercyclic vectors for certain families of skew-product systems.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385708001065</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Differential equations ; Functional Analysis ; Linear equations ; Mathematics ; Topological manifolds ; Vector space</subject><ispartof>Ergodic theory and dynamical systems, 2010-02, Vol.30 (1), p.33-49</ispartof><rights>Copyright © Cambridge University Press 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>free</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-487c03a238e9d1bc91b3109af2ce26ac4a0353b0cc251cf3e60904d0f04351683</citedby><cites>FETCH-LOGICAL-c424t-487c03a238e9d1bc91b3109af2ce26ac4a0353b0cc251cf3e60904d0f04351683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385708001065/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,72832</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00576678$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>BAYART, FRÉDÉRIC</creatorcontrib><creatorcontrib>COSTAKIS, GEORGE</creatorcontrib><creatorcontrib>HADJILOUCAS, DEMETRIS</creatorcontrib><title>Topologically transitive skew-products of operators</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>The purpose of the present paper is to provide a link between skew-product systems and linear dynamics. In particular, we give a criterion for skew-products of linear operators to be topologically transitive. This is then applied to certain families of linear operators including scalar multiples of the backward shift, backward unilateral weighted shifts, composition, translation and differentiation operators. We also prove the existence of common hypercyclic vectors for certain families of skew-product systems.</description><subject>Differential equations</subject><subject>Functional Analysis</subject><subject>Linear equations</subject><subject>Mathematics</subject><subject>Topological manifolds</subject><subject>Vector space</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kElPwzAQhS0EEmX5AdwqbggFZrwmR1SWApUQAi5cLNdxwBDqYqcs_55EQSxCnEaa-ebNm0fIFsIeAqr9K0DOWC4U5AAIUiyRAXJZZJyjWiaDbpx181WyltIDADBUYkDYdZiHOtx5a-r6fdhEM0u-8S9umB7dazaPoVzYJg1DNQxzF00TYtogK5Wpk9v8rOvk5vjoejTOJhcnp6ODSWY55U3Gc2WBGcpyV5Q4tQVOGUJhKmodlcZyA0ywKVhLBdqKOQkF8BIq4EygzNk62e11a9P4mZ-V7k3Po38y8V0H43V0NsRSc0ROO3qnp-9N_QsbH0x01wMQSkqVv2DLbvds-9_zwqVGP4RFnLXPaNpmR1Fy0ULYQzaGlKKrvlQRdBe6_hN6u5P1Oz41P9ya-KilYkpoeXKpb89GjJ4fjjVvefZ5wzxNoy_v3LeT_698ADzOkKg</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>BAYART, FRÉDÉRIC</creator><creator>COSTAKIS, GEORGE</creator><creator>HADJILOUCAS, DEMETRIS</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>77F</scope></search><sort><creationdate>20100201</creationdate><title>Topologically transitive skew-products of operators</title><author>BAYART, FRÉDÉRIC ; COSTAKIS, GEORGE ; HADJILOUCAS, DEMETRIS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-487c03a238e9d1bc91b3109af2ce26ac4a0353b0cc251cf3e60904d0f04351683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Differential equations</topic><topic>Functional Analysis</topic><topic>Linear equations</topic><topic>Mathematics</topic><topic>Topological manifolds</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAYART, FRÉDÉRIC</creatorcontrib><creatorcontrib>COSTAKIS, GEORGE</creatorcontrib><creatorcontrib>HADJILOUCAS, DEMETRIS</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Latindex</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BAYART, FRÉDÉRIC</au><au>COSTAKIS, GEORGE</au><au>HADJILOUCAS, DEMETRIS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topologically transitive skew-products of operators</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>30</volume><issue>1</issue><spage>33</spage><epage>49</epage><pages>33-49</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>The purpose of the present paper is to provide a link between skew-product systems and linear dynamics. In particular, we give a criterion for skew-products of linear operators to be topologically transitive. This is then applied to certain families of linear operators including scalar multiples of the backward shift, backward unilateral weighted shifts, composition, translation and differentiation operators. We also prove the existence of common hypercyclic vectors for certain families of skew-product systems.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0143385708001065</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2010-02, Vol.30 (1), p.33-49 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_latinindex_primary_oai_record_411428 |
source | Cambridge University Press |
subjects | Differential equations Functional Analysis Linear equations Mathematics Topological manifolds Vector space |
title | Topologically transitive skew-products of operators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_latin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topologically%20transitive%20skew-products%20of%20operators&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=BAYART,%20FR%C3%89D%C3%89RIC&rft.date=2010-02-01&rft.volume=30&rft.issue=1&rft.spage=33&rft.epage=49&rft.pages=33-49&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385708001065&rft_dat=%3Cproquest_latin%3E1961364151%3C/proquest_latin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-487c03a238e9d1bc91b3109af2ce26ac4a0353b0cc251cf3e60904d0f04351683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=206521645&rft_id=info:pmid/&rft_cupid=10_1017_S0143385708001065&rfr_iscdi=true |