Loading…

Topologically transitive skew-products of operators

The purpose of the present paper is to provide a link between skew-product systems and linear dynamics. In particular, we give a criterion for skew-products of linear operators to be topologically transitive. This is then applied to certain families of linear operators including scalar multiples of...

Full description

Saved in:
Bibliographic Details
Published in:Ergodic theory and dynamical systems 2010-02, Vol.30 (1), p.33-49
Main Authors: BAYART, FRÉDÉRIC, COSTAKIS, GEORGE, HADJILOUCAS, DEMETRIS
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-487c03a238e9d1bc91b3109af2ce26ac4a0353b0cc251cf3e60904d0f04351683
cites cdi_FETCH-LOGICAL-c424t-487c03a238e9d1bc91b3109af2ce26ac4a0353b0cc251cf3e60904d0f04351683
container_end_page 49
container_issue 1
container_start_page 33
container_title Ergodic theory and dynamical systems
container_volume 30
creator BAYART, FRÉDÉRIC
COSTAKIS, GEORGE
HADJILOUCAS, DEMETRIS
description The purpose of the present paper is to provide a link between skew-product systems and linear dynamics. In particular, we give a criterion for skew-products of linear operators to be topologically transitive. This is then applied to certain families of linear operators including scalar multiples of the backward shift, backward unilateral weighted shifts, composition, translation and differentiation operators. We also prove the existence of common hypercyclic vectors for certain families of skew-product systems.
doi_str_mv 10.1017/S0143385708001065
format article
fullrecord <record><control><sourceid>proquest_latin</sourceid><recordid>TN_cdi_latinindex_primary_oai_record_411428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0143385708001065</cupid><sourcerecordid>1961364151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-487c03a238e9d1bc91b3109af2ce26ac4a0353b0cc251cf3e60904d0f04351683</originalsourceid><addsrcrecordid>eNp1kElPwzAQhS0EEmX5AdwqbggFZrwmR1SWApUQAi5cLNdxwBDqYqcs_55EQSxCnEaa-ebNm0fIFsIeAqr9K0DOWC4U5AAIUiyRAXJZZJyjWiaDbpx181WyltIDADBUYkDYdZiHOtx5a-r6fdhEM0u-8S9umB7dazaPoVzYJg1DNQxzF00TYtogK5Wpk9v8rOvk5vjoejTOJhcnp6ODSWY55U3Gc2WBGcpyV5Q4tQVOGUJhKmodlcZyA0ywKVhLBdqKOQkF8BIq4EygzNk62e11a9P4mZ-V7k3Po38y8V0H43V0NsRSc0ROO3qnp-9N_QsbH0x01wMQSkqVv2DLbvds-9_zwqVGP4RFnLXPaNpmR1Fy0ULYQzaGlKKrvlQRdBe6_hN6u5P1Oz41P9ya-KilYkpoeXKpb89GjJ4fjjVvefZ5wzxNoy_v3LeT_698ADzOkKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206521645</pqid></control><display><type>article</type><title>Topologically transitive skew-products of operators</title><source>Cambridge University Press</source><creator>BAYART, FRÉDÉRIC ; COSTAKIS, GEORGE ; HADJILOUCAS, DEMETRIS</creator><creatorcontrib>BAYART, FRÉDÉRIC ; COSTAKIS, GEORGE ; HADJILOUCAS, DEMETRIS</creatorcontrib><description>The purpose of the present paper is to provide a link between skew-product systems and linear dynamics. In particular, we give a criterion for skew-products of linear operators to be topologically transitive. This is then applied to certain families of linear operators including scalar multiples of the backward shift, backward unilateral weighted shifts, composition, translation and differentiation operators. We also prove the existence of common hypercyclic vectors for certain families of skew-product systems.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385708001065</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Differential equations ; Functional Analysis ; Linear equations ; Mathematics ; Topological manifolds ; Vector space</subject><ispartof>Ergodic theory and dynamical systems, 2010-02, Vol.30 (1), p.33-49</ispartof><rights>Copyright © Cambridge University Press 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>free</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-487c03a238e9d1bc91b3109af2ce26ac4a0353b0cc251cf3e60904d0f04351683</citedby><cites>FETCH-LOGICAL-c424t-487c03a238e9d1bc91b3109af2ce26ac4a0353b0cc251cf3e60904d0f04351683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385708001065/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,72832</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00576678$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>BAYART, FRÉDÉRIC</creatorcontrib><creatorcontrib>COSTAKIS, GEORGE</creatorcontrib><creatorcontrib>HADJILOUCAS, DEMETRIS</creatorcontrib><title>Topologically transitive skew-products of operators</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>The purpose of the present paper is to provide a link between skew-product systems and linear dynamics. In particular, we give a criterion for skew-products of linear operators to be topologically transitive. This is then applied to certain families of linear operators including scalar multiples of the backward shift, backward unilateral weighted shifts, composition, translation and differentiation operators. We also prove the existence of common hypercyclic vectors for certain families of skew-product systems.</description><subject>Differential equations</subject><subject>Functional Analysis</subject><subject>Linear equations</subject><subject>Mathematics</subject><subject>Topological manifolds</subject><subject>Vector space</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kElPwzAQhS0EEmX5AdwqbggFZrwmR1SWApUQAi5cLNdxwBDqYqcs_55EQSxCnEaa-ebNm0fIFsIeAqr9K0DOWC4U5AAIUiyRAXJZZJyjWiaDbpx181WyltIDADBUYkDYdZiHOtx5a-r6fdhEM0u-8S9umB7dazaPoVzYJg1DNQxzF00TYtogK5Wpk9v8rOvk5vjoejTOJhcnp6ODSWY55U3Gc2WBGcpyV5Q4tQVOGUJhKmodlcZyA0ywKVhLBdqKOQkF8BIq4EygzNk62e11a9P4mZ-V7k3Po38y8V0H43V0NsRSc0ROO3qnp-9N_QsbH0x01wMQSkqVv2DLbvds-9_zwqVGP4RFnLXPaNpmR1Fy0ULYQzaGlKKrvlQRdBe6_hN6u5P1Oz41P9ya-KilYkpoeXKpb89GjJ4fjjVvefZ5wzxNoy_v3LeT_698ADzOkKg</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>BAYART, FRÉDÉRIC</creator><creator>COSTAKIS, GEORGE</creator><creator>HADJILOUCAS, DEMETRIS</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>77F</scope></search><sort><creationdate>20100201</creationdate><title>Topologically transitive skew-products of operators</title><author>BAYART, FRÉDÉRIC ; COSTAKIS, GEORGE ; HADJILOUCAS, DEMETRIS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-487c03a238e9d1bc91b3109af2ce26ac4a0353b0cc251cf3e60904d0f04351683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Differential equations</topic><topic>Functional Analysis</topic><topic>Linear equations</topic><topic>Mathematics</topic><topic>Topological manifolds</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAYART, FRÉDÉRIC</creatorcontrib><creatorcontrib>COSTAKIS, GEORGE</creatorcontrib><creatorcontrib>HADJILOUCAS, DEMETRIS</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Latindex</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BAYART, FRÉDÉRIC</au><au>COSTAKIS, GEORGE</au><au>HADJILOUCAS, DEMETRIS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topologically transitive skew-products of operators</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>30</volume><issue>1</issue><spage>33</spage><epage>49</epage><pages>33-49</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>The purpose of the present paper is to provide a link between skew-product systems and linear dynamics. In particular, we give a criterion for skew-products of linear operators to be topologically transitive. This is then applied to certain families of linear operators including scalar multiples of the backward shift, backward unilateral weighted shifts, composition, translation and differentiation operators. We also prove the existence of common hypercyclic vectors for certain families of skew-product systems.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0143385708001065</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2010-02, Vol.30 (1), p.33-49
issn 0143-3857
1469-4417
language eng
recordid cdi_latinindex_primary_oai_record_411428
source Cambridge University Press
subjects Differential equations
Functional Analysis
Linear equations
Mathematics
Topological manifolds
Vector space
title Topologically transitive skew-products of operators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_latin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topologically%20transitive%20skew-products%20of%20operators&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=BAYART,%20FR%C3%89D%C3%89RIC&rft.date=2010-02-01&rft.volume=30&rft.issue=1&rft.spage=33&rft.epage=49&rft.pages=33-49&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385708001065&rft_dat=%3Cproquest_latin%3E1961364151%3C/proquest_latin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-487c03a238e9d1bc91b3109af2ce26ac4a0353b0cc251cf3e60904d0f04351683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=206521645&rft_id=info:pmid/&rft_cupid=10_1017_S0143385708001065&rfr_iscdi=true