Loading…
Sharp time decay estimates for the discrete Klein-Gordon equation
We establish sharp time decay estimates for the Klein–Gordon equation on the cubic lattice in dimensions d = 2, 3, 4. The ℓ1 → ℓ∞ dispersive decay rate is |t|−3/4 for d = 2, |t|−7/6 for d = 3 and |t|−3/2 log|t| for d = 4. These decay rates are faster than conjectured by Kevrekidis and Stefanov (2005...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We establish sharp time decay estimates for the Klein–Gordon equation on the cubic lattice in dimensions d = 2, 3, 4. The ℓ1 → ℓ∞ dispersive decay rate is |t|−3/4 for d = 2, |t|−7/6 for d = 3 and |t|−3/2 log|t| for d = 4. These decay rates are faster than conjectured by Kevrekidis and Stefanov (2005). The proof relies on oscillatory integral estimates and proceeds by a detailed analysis of the singularities of the associated phase function. We also prove new Strichartz estimates and discuss applications to nonlinear PDEs and spectral theory. |
---|